
Spherical Geometry

Eric Lehman

february-april 2012



2



Table of content

1 Spherical biangles and spherical triangles 3
§ 1. The unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
§ 2. Biangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
§ 3. Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Coordinates on a sphere 13
§ 1. Cartesian versus spherical coordinates . . . . . . . . . . . . . . . . . . . . . . 13
§ 2. Basic astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
§ 3. Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Spherical trigonometry 23
§ 1. Pythagoras’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
§ 2. The three laws of spherical trigonometry . . . . . . . . . . . . . . . . . . . . . 24

4 Stereographic projection 29
§ 1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
§ 2. The stereographic projection preserves the angles . . . . . . . . . . . . . . . . 34
§ 3. Images of circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Projective geometry 49
§ 1. First description of the real projective plane . . . . . . . . . . . . . . . . . . . 49
§ 2. The real projective plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
§ 3. Generalisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3



4 TABLE OF CONTENT



TABLE OF CONTENT 1

Introduction

The aim of this course is to show different aspects of spherical geometry for itself, in
relation to applications and in relation to other geometries and other parts of mathematics.
The chapters will be (mostly) independant from each other.

To begin, we’l work on the sphere as Euclid did in the plane looking at triangles. Many
things look alike, but there are some striking differences. The second viewpoint will be the
introduction of coordinates and the application to basic astronomy. The theorem of Pytha-
goras has a very nice and simple shape in spherical geometry. To contemplate spherical
trigonometry will give us respect for our ancestors and navigators, but we shall skip the
computations! and let the GPS do them. The stereographic projection is a marvellous tool
to understand the pencils of coaxial circles and many aspects of the relation between the
spherical geometry, the euclidean affine plane, the complex projective line, the real projec-
tive plane, the Möbius strip and even the hyperbolic plane.

cf. http ://math.rice.edu/ pcmi/sphere/
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Chapter 1

Spherical biangles and spherical
triangles

§ 1. The unit sphere
§ 2. Biangles
§ 3. Triangles

§ 1. The unit sphere

We denote the usual Euclidean 3-dimensional space by P .

Definition. Given a point O in P and a real number r , we call sphere centered at O with
radius r the subset S of P whose elements are the points M such that the distance MO is
equal to r .

Let us take an orthonormal frame .O;E{; Ej ; Ek/. The point M.x; y; z/ is such that

��!
OM D xE{ C y E| C z Ek

The distance OM is equal to k
��!
OMk D

q
��!
OM �

��!
OM D

p
x2 C y2 C z2, where � denotes

the scalar product (we can also get that result using Pythagoras’ theorem twice).
As a consequence, we see that M belongs to S if and only if

x2 C y2 C z2 D r2 .1/

We say that .1/ is the equation of the sphere. We call North Pole the point NP.0; 0; r/ and
South Pole the point SP.0; 0;�r/.
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1.1 Area of the sphere (Archimedes)

Definition. Given the sphere S of equation (1), we call circumscribed cylinder † the set of
points N.x; y; z/ such that 8<:x

2 C y2 D r2

and
�r < z < r

†
S

�

�

NP

SP

Definition. The Lambert projection is the map

ƒ W S X fNP; SP g �! †;M.x; y; z/ 7! N.
xrp
x2 C y2

;
yrp
x2 C y2

; z/

M

N

M N

M

N

O x

y

r�

xN

xM
D
yN

yM
D
r

�

�2 D x2M C y
2
M
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Proposition. The Lambert projection is bijective and area-preserving.
Proof. To prove bijectivity, we have to prove that the system in .xM ; yM ; zM /8̂̂̂̂

<̂
ˆ̂̂:

xM rq
x2
M
Cy2

M

D xN

yM rq
x2
M
Cy2

M

D yN

zM D zN
x2M C y

2
M C z

2
M D r

2

has a unique solution when x2N C y
2
N D r2 and �r < zN < r . The computation is simple

and the geometrical proof is even simpler. The solution is8̂̂<̂
:̂
xM D

q
r2�z2

N

r
xN

yM D

q
r2�z2

N

r
yN

zM D zN

To show the preservation of areas, we follow Archimedes (with modern notations !) :
consider the circle with latitude � and take a small piece dhS � d`S where dhS is along
that circle and d`S is orthogonal to that circle. Let us make the Lambert projection : we get
dh† � d`†, where dhS D dh† cos � and d`† D d`S cos � . Thus dh† � d`† DdhS � d`S .
�

�

SP

NP

SP

NP

r

�

d`S d`†
dhS

dh†

Fig 3 : the plane z D zM seen from above
Fig 1 and fig 2 : a plane containing the line through the poles

Corollary. The area of the sphere is 4�r2.
Proof. It is possible to unfold the cylinder on a plane getting a rectangle. One side has length
the height 2r of the cylinder ; the other side has the length of the circle at the basis of the
cylinder, that is 2�r . Thus the area of† is 4�r2 and since the Lambert projection preserves
areas, the sphere S has the same area.�
Remark 1. From the area, it is easy to get the volume

VS D

Z r

0

4�r2 dr D
4

3
�r3

Remark 2. Horizontal stripes of a sphere with equal differences of altitudes have same

** Exercise 1. Show that it is
not possible to cover comple-
tely a round hole whose dia-
meter is 1 meter, with 9 (rec-
tangular) planks having the
same breadth 10 cm and any
length greater than 1 meter.

area. More precisely : let a stripe S.z1; z2/ with �r 6 z1 < z2 6 r denote the set of points
.x; y; z/ of the sphere (center O and radius r) such that z1 6 z 6 z2. Then

z2 � z1 D z
0
2 � z

0
1 H) area of S.z1; z2/ D area of S.z01; z

0
2/
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1.2 Solid angles

Recall that to characterize a plane angle A you look at the arc a of a circle centered
at the vertex O of the angle and of radius 1. The measure of A is the length of a. The
corresponding unit for measuring angles is then the radian : 1 radian is the measure of
an angle U such that the corresponding arc u has length 1. Thus a full turn measures 2�
radians, a flat angle measures � radians and a right angle �

2
radians.

Definition. A solid angle (or space angle)� is the union of half-lines or rays having all the
same initial point O (we require also � X fOg to be connected). The intersection ! of �
with the sphere S with centerO and radius 1, caracterize the solid angle�. The measure of
� is the area of !. The corresponding unit for measuring solid angles is then the steradian
(denoted sr) : 1 steradian is the measure of a solid angle W such that the corresponding
surface w has an area equal to 1. Thus the whole space measures 4� steradians, a half-
space measures 2� steradians, a quarter of the whole space (between 2 orthogonal half-
spaces with common edge going through O) measures � steradians and an octant (the first
octant is the set of all points such that x > 0, y > 0 and z > 0) measures �

2
steradians.

1.3 Intersections of the sphere S with planes

Proposition. The intersection of a sphere with a plane is a circle (a point is a circle with
radius 0) or empty. More precisely, let S be a sphere with center O and radius r , let P be
a plane and C the orthogonal projection of O on P and put d D OC . Then if d 6 r ,
C D S \ P is the circle in the plane P , with center C and radius

p
r2 � d2 and if d > r ,

C D S \ P D ¿.

Definitions. A great circle of a sphere S is an intersection of S with a plane containing the
center O of the sphere.

Two points on the sphere are antipodal or opposite relatively to the center if the line
joining them goes through the center of the sphere.

The great circles of a sphere are the circles included in the sphere which are centered at
the center O of the sphere.

A circle of S which is not a great circle is called a little circle.

Exercise 2. Let C be a circle included in a sphere S . Can we know
the plane of that circle even when the radius of the circle is 0 ?

Exercise 3. Let A and A0 be two antipodal points on a sphere with
centerO . Show thatO is the middle of the segment AA0.

Exercise 4. Show that if a circle in S contains two opposite points,
then it is a great circle.

Exercise 5. Show that the intersection of two great circles is a pair
of antipodal points.

§ 2. Biangles

From now on, the sphere S has centerO and radius 1 and all circles are circles included
in the surface S (unless special specification).

Definition. Let A and A0 be two antipodal points and g and g0 two half-circles with end-
points A and A0. The part B of S between g and g0, included in one half-space, is called a
biangle. The edges of the biangle B are g and g0, its vertices are A and A0.
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The biangle B has two angles : one angle ˛ at the vertex A and one ˛0 at the vertex A0.
The angle ˛ is the angle formed by the two half-lines with end point A tangent to g and g0.
The angle ˛0 is defined the same way at A0. Since the half-tangents to g at A and A0 are
parallel and with the same direction and since the same holds at A0, we see that the angles
˛ and ˛0 are equal

˛ D ˛0

Therefor, this angle ˛ is called the angle of the biangle.

A0

O

A

g g0

Proposition. The area of a biangle is twice its angle.
Remark. A biangle B may be looked as the intersection of a solid angle � with the sphere
S . The area of the biangle B is then the measure !B in steradians of the solid angle �. On
the other hand, the angle ˛B of B is a plane angle and if it is measured in radians, we have

!B D 2˛B

Notice that we could wright the formula : !B D ˛A C ˛A0 .

Exercise 6. Describe the biggest possible biangle (on S ).

Exercise 7. LetM anN be two points on S . We suppose that there

are 2 distinct arcs g and g 0 of great circles 
 and 
 0, with endpoints
M and N . Show that ifM and N are not antipodal, then 
 D 
 0.
What do you think of "biangles" that would not be "equilateral" ?

§ 3. Triangles

3.1 An attempt to formulate a definition

Definition. Let A, B and C be three points on S , which do not belong to a commen great
circle. Let a be the smallest arc of a great circle with endpoints B and C , b be the smallest
arc of a great circle with endpoints C and A and c be the smallest arc of a great circle
with endpoints B and A. The closed curve ` D a [ b [ c divides S into three parts : `,
T1 and T2. Both subsets T1 D ` [ T1 and T2 D ` [ T2 are closed bounded subset of S .
One of them is included in a hemisphere, we call it the little spherical triangle ABC , the
other one contains a hemisphere, we call it the big spherical triangle ABC . The simplified
denominations "triangle ABC" or "ABC " will be used for "little spherical triangle ABC ".

The points A, B and C are the vertices or vertexes (singular : vertex) of the triangle
ABC , the arcs a, b and c are the sides of ABC . We measure the lengths of the sides in
radians since the sides are arcs of circles with radius 1. We keep the same letter for the side
and for its measure, thus if we denote the center of S by O :

a D 1BOC I b D1COA I c D1AOB
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We measure the area of ABC in steradians. Thus :

area of little ABC C area of big ABC D area of S D 4�

Remark. If, for instanceB andC are antipodal, there is not one smallest arc of a great circle
with endpoints B and C , but all such arcs have the same length � and there are infintely
many of them. In that case, we have to choose the arc a among all the arcs of great circles
with endpoints B and C .

3.2 Angles of a spherical triangle

Definition. Let ABC be little spherical triangle. The plane anglebA is the angle between the
half-lines tangent to the arcs b and c in A. We call ˛ the measure in radians of bA. We define
in the same way the angles B and C and the measures in radians ˇ and 
 of these angles.

˛
ˇ 
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Proposition. Let T2 be the big triangle ABC . The angles of T2 are cA2, cB2 and cC2 such thatbA[cA2 is the tangent plane to S at A, bB [cB2 is the tangent plane to S at B and bC [cC2 is
the tangent plane to S at C . The measure ˛2 in radians of cA2 is ˛2 D 2� � ˛, the measure
ˇ2 in radians of cB2 is ˇ2 D 2� � ˇ and the measure 
2 in radians of cC2 is 
2 D 2� � 
 .

Example. LetA be a point of S and let g be a great circle throughA. The pointA0, antipodal
to A, lies on g. Let B be a point on g such that 1AOB D 1BOA0. We call c the little arc of
g joining A and B . Draw the great circles through A and B orthogonal to c. Let C be one
of the intersection points of these two great circles. The little triangle ABC has three right
angles. To draw the picture, imagine the point A at the North Pole.

A

B
C

Definition. Let T D ABC be a spherical triangle and let ˛, ˇ and 
 be the measures in
radians of the angles of the spherical triangle T . The number

E D ˛ C ˇ C 
 � �

is called the excess of the triangle T .
Example. In the previous example, the excess is equal to �

2
.

3.3 Girard’s theorem

Quotes from Wikipedia, Article by : J J O’Connor & E F Robertson :

Albert Girard (1595, Saint-Mihiel –8 December 1632, Leiden)
was French but, being a member of the Reformed church, went as a
religious refugee to the Netherlands.

He is the first person who understood the general doctrine of
the formation of the coefficients of the powers, from the sums of
their roots, and their products, etc.

He is the first who understood the use of negative roots in the
solution of geometrical problems.

He is the first who spoke of the imaginary roots, and understood
that every equation might have as many roots real and imaginary,
and no more, as there are units in the index of the highest power.

And he was the first who gave the whimsical name of quantities less
than nothing to the negative.

He is the first who discovered the rules for summing the powers
of the roots of any equation.

He is also famed for being the first to formulate the (now well-
known) inductive definition fn+2 = fn+1 + fn for the Fibonacci
sequence, and stating that the ratios of terms of the Fibonacci se-
quence tend to the golden ratio.

He is the first to have used the symbols sin for sinus, cos for
cosine and tan for tangent.

He gave the formula for the area of a spherical triangle, but he
was not the first ! It was discovered earlier but not published by the
English mathematician Thomas Harriot.

Theorem. The area of a spherical triangle is equal to its excess.

Area of the spherical triangle ABC D sum of the plane angles of the spherical triangleABC � �
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or

SABC D ˛ C ˇ C 
 � �

Proof.

Preliminary remark : we neglet all the boundaries when we use or reason about areas.
Let us call A0, B 0 and C 0 the points antipodal respectively to A, B and C . We may first

notice the triangle T 0 D A0B 0C 0 is the image of the triangle T D ABC by the symmetry
relatively to the center O of the sphere S . This symmetry is an isometry, thus the areas are
equal

ST 0 D ST

Let us call ga the great circle containing B and C (or the side a), gb the great circle
containing C andA (or the side b) and gc the great circle containingA andB (or the side c).
The great circles gb and ga determine two antipodal biangles with angle of measure ˛. Let
us call A the union of these two biangles. Each biangle has an area equal to 2˛. The total
area of A is then

SA D 4˛

In the same way, we define B as the union of the two biangles with angle ˇ defined by gc
and ga and C as the union of the two biangles with angle 
 defined by ga and gb . We have

SB D 4ˇ and SC D 4


If we neglect parts of area 0, we have

T \ T 0D¿
B \ C D T [ T 0

C \AD T [ T 0

A \ BD T [ T 0

A [ B [ C D sphere S

Thus
SA C SB C SC � 2.ST C ST 0/ D 4�

or
4˛ C 4ˇ C 4
 � 2.ST C ST / D 4�

Finally
˛ C ˇ C 
 D � C ST �

Example. If the triangle ABC is trirectangle, we have indeed

�

2
C
�

2
C
�

2
D � C

1

8
.4�/
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Exercise 8. Let ABC be a little spherical triangle on S, with sides
a, b and c. Let a0 be the arc of great circle with endpoints B and
C such that a[a0 is a great circle. We denote by T1a and T2a the
spherical triangles with vertices A, B and C and with sides a0, b
and c. What are the angles of these two triangles ? Does the Girard’s
theorem apply to T1a and T2a ?

Exercise 9. Let Q be a convex spherical quadrilateral with angles
˛, ˇ , 
 and ı . Determine the area SQ of that quadrileral. What
happens with a "complex" or "self-intersecting" quadrilateral ? Ge-
neralize.

Exercise 10. Show that it is not possible to draw a "spherical rec-
tangle", that is a quadrilateral with 4 right angles (Hint. Compute
the area of such a quadrangle, using exercise 9). How can we define
a "spherical square" ?

LetK be a cube such that all vertices ofK belong to S . Project
centrally, with O as center of projection, each point MK belon-
ging to K on the sphere S and denote byMS the image, that is the
point in S such that O , MK and MS are on a line. The images
of the faces of K are 6 isometric quadrilaterals, which can be cal-
led "squares". What are the angles of these "squares" ? What are the
areas of these squares ?

3.4 Application : Euler’s formula

(We did it last year). Legendre’s beautiful proof of Euler’s formula is based on Girard’s theorem.
Suppose that F triangles make a triangulation of the sphere S ; denote by E the number

of edges ; and by V the number of vertices. Then, summing all angles in all triangles, the
total angle sum is 2�V (as all of the angles occur at a vertex without overlap, and the angle
sum at any one of the V vertices is exactly 2�). Also, the sum of the areas of the triangles
is the area of the sphere, namely 4� ; thus we see that

2�V D 4� C F�

or
V �

F

2
D 2

Now (by counting edges of each triangle and noting that this counts each edge twice), we
obtain 3F D 2E, or E D 3F

2
. Thus we have F �ECV D F � 3F

2
C .2C F

2
/ D 2 which

is Euler’s formula :

F �E C V D 2

The formula is valid for any convex polyhedron : you project centrally the polyhedron
on a circumscribed sphere.
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Indications, answers or solutions

Ex 1. Imagine a sphere having as great circle the circle surrounding
the given round hole. Let us think the hole as done in a horizontal
plane. If a plank covers a part of the hole, consider the part of space
between the two vertical planes going through the long sides of the
plank. We call induced by the plank the part of the sphere between
these two planes.
If we had 10 planks, we could put them side by side and cover the
hole completely (the whole hole !). But following the remark 2, the
parts of the sphere induced by the planks are all of the same area.
That means that the area of the sphere induced by one plank is at
most one 10th of the total area of the sphere. Thus with 9 planks
we get a total induced part with an area equal at most to the 9

10
th

of the total sphere. And the orthogonal projection on the plane of
the points of the sphere which are not in an induced part will not be
covered by any plank.
Ex 2. The plane tangent to the sphere at that point.
Ex 3. SinceO is the center of the sphereOA D OA0.
Ex 4. The plane containing the circle contains these two antipo-
dal points and thus also there midpoint, that is the center O of the
sphere.
Ex 5. The 2 planes containing the great circles contain the centerO
of the sphere. Therefore theire intersection is a line containing O .
This line intersects S in two antipodal points on S .
Ex 6. A hemisphere (measure : 2�).
Ex 7. If the points M and N are not antipodal, then there is only
one great circle containing both M and N , because there is only
one plane going through the three points O , M and N when they
are not on one line.
If a biangle is not equilateral it has to be a hemisphere : take two
points M and N which are not antipodal, the great circle through
M andN is cut into two arcs of different lengths, defining a biangle
with plane angles which are flat angles.
Ex 8. The shapes of T1a and T2a are the hemisphere containing A
with boundary the great circle containingB andC from which is ta-
ken away the little triangleABC OR the hemisphere not containing

A, with boundary the great circle containing B and C , to which is
added the little triangle ABC . The angles of T1a are

˛1 D 2� � ˛ I ˇ1 D � � ˇ I 
1 D � � 


Thus the sum is
˛1 C ˇ1 C 
1 D 4� � .˛C ˇ C 
/ D 4� � .� C ST /

D � C .2� � ST /

The area of T1a is 1
2
.4�/ � ST D 2� � ST . Thus we see that

Girard’s theorem is still valid.
The angles of T2a are

˛2 D ˛ I ˇ2 D � C ˇ I 
2 D � C 


Thus the sum is
˛2 C ˇ2 C 
2 D 2� C .˛C ˇ C 
/ D 2� C .� C ST /

D � C .2� C ST /

The area of T2a is 1
2
.4�/C ST D 2� C ST . Thus we see that

Girard’s theorem is still valid.
Ex 9. Draw a "spherical" diagonal and apply Girards theorem to
each of them and add, you get

˛C ˇ C 
 C ı D 2� C SQ

If you have a "spherical" polygon P with n sides that do not cross
each other, the area SP of P is related to the sum of its angles by
the relation

The sum of the (interior) angles of P D .n� 2/� C SP

The formula is still valid for a self-intersecting quadrilateral if you
introduce the algebraic area.
Ex 10. Suppose there is a "rectangle", quadrilateral with 4 right
angles. The area of this rectangle would be �

2
C�
2
C�
2
C�
2
�2� D

0.
120° or ˛ D 2�

3
, since at each vertex 3˛ D 2�(=1complete turn).

Area D 4� W 6, or Area D 4 2�
3
� 2� D 2�

3
.



Chapter 2

Coordinates on a sphere

§ 1. Cartesian versus spherical coordinates
§ 2. Basic astronomy
§ 3. Geodesics

§ 1. Cartesian versus spherical coordinates

There are mainly two coordinate systems used on a sphere : the cartesian coordinates
and the spherical coordinates. We take as unit length the radius of the sphere S .

1.1 Cartesian coordinates

We suppose given an orthonormal frame .O;E{; E|; Ek/ of the space. The coordinates .x; y; z/
of a point M in space are the such that

��!
OM D xE{ C y E| C z Ek

The point M.x; y; z/ belongs to sphere S if and only if

x2 C y2 C z2 D 1 (2.1)

Advantages. These coordinates are convenient to compute scalar products and norms.
Example : let M1.x1; y1; z1/ and M2.x2; y2; z2/ be two points on S . The "length"

`M1M2 of the arc
_

M1M2 is equal to the angle � between the vectors
���!
OM1 and

���!
OM2

cos `M1M2 D cos � D
���!
OM1 �

���!
OM2 D x1x2 C y1y2 C z1z2

Disadvantages. The coordinates are not independent on the sphere. You must always use
the relation 2.1 as a constraint.

13



14 CHAPTER 2. COORDINATES ON A SPHERE

1.2 Spherical coordinates

Let M.x; y; z/ be a point in space such that .x; y/ ¤ .0; 0/, the spherical coordinates
of M are .r; �; '/ defined in the following way

– r D OM or k
��!
OMk

– � is the oriented angle .
�!
k ;
��!
OM/.

– ' is the oriented angle .�!{ ;
��!
Om/, where m is the orthogonal projection of M on the plane xOy.

If the point M has coordinates .0; 0; z/, where z > 0, ' is not defined and � D 0.

If the point M has coordinates .0; 0; z/, where z < 0, ' is not defined and � D � .

If the point M has coordinates .0; 0; 0/, that is M D O , ' and � are not defined.

The sphere S is characterized by the equation

r D 1 (2.2)

A point M on the sphere and distinct from the points .0; 0; 1/ and .0; 0;�1/ is charac-
terized by two independent coordinates � and '.

The curve with � D Constant D �0 is a circle, intersection of S with the plane parallel
to xOy which has the equation z D cos �0. The angle � is calles the inclination angle. The
elevation of M is the angle �

2
� � . The inclination may also be called colatitude, zenith

angle, normal angle, or polar angle.

The curve with ' D Constant D '0 is a half great circle. The great circle is the inter-
section of S with the plane which has the equation x sin'0�y cos'0 D 0. The half is such
that y sin'0 > 0 if sin'0 ¤ 0 and x cos'0 > 0 if sin'0 D 0 . The angle ' is called the
azimuth angle.

In geography, the elevation and azimuth are called the latitude and longitude.

In astronomy, the elevation and azimuth are called the declination and right ascension.
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'

' = azimuth = longitude = right ascension

�

�= inclination = colatitude = zenith angle
= normal angle = polar angle

�
2
� � = elevation = latitude = declination

1.3 Change of coordinates

From spherical coordinates to cartesian coordinates.8<:xD sin � cos'
y D sin � sin'
zD cos �

From cartesian coordinates to spherical coordinates.�
tan' D y

x

� D arccos z

But the first relation is not enough to determine ' completely. More precisely : if y > 0,
then 0 < ' < � (modulo 2�) ; if y < 0, then � < ' < 2� (modulo 2�) ; if y D 0 and
x > 0, then ' D 0 (modulo 2�) and if y D 0 and x < 0, then ' D � (modulo 2�).

Exercise 1. Let us define the spherical quadrilateralQ D ABCD
in the following way : A.� D �

4
; ' D 0/, B.� D �

4
; ' D �

2
/,

C.� D 3�
4
; ' D �

2
/,D.� D 3�

4
; ' D 0/ and the sides AB and

CD are on the circles � D �
4

and � D 3�
4

, with 0 6 ' 6 �
2

and

the sides BC and DA are on the half-crcles ' D 0 and ' D �
2

with �
4

6 � 6 3�
4

.
Show that the four angles ofQ are right angles. IsQ a spheri-

cal square or a spherical rectangular ?
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Exercise 2. Let us make the assumption that the Earth is sphe-
rical with radius 6400 km. Compute 1°) the distance bet-
ween Joensuu (Lattitude : 62°35’North, Longitude : 29°45’East)
and Caen (49°10’N ; 0°22’West) ; 2°) the distance between Pa-

ris(48°49’N,2°19’E) and Christchuch(43°32’S,172°40’E) ; 3°) the
distance from one pole to the other. Does this last value have any-
thing to do with the french revolution ?

§ 2. Basic astronomy

Vocabulary :
– Celestial sphere
– Zenith = Strait above your head
– Nadir = Antipodal point to Zenith on the celestial sphere
– Horizon = Great circle through the plane tangent to the Earth at Joensuu
– NCP = North celestial pole intersetion of the axis of rotation of the Earth with the celestial sphere
– SCP = South celestial pole = antipodal to NCP
– Celestial equator = plane through the Earth’s equator\ the celestial sphere
– Polaris = North star ; lies near the NCP
– Celsetial meridian = meridian of the celestial sphere through NCP, Zenith, SCP and Nadir
– Ecliptic = anual path of the sun
– NEP = North ecliptic pole
– SEP = South ecliptic pole
– Vernal equinox = March 20
– Autumnal equinox = September 23
– Summer solstice = June 21
– Winter solstice = December 22

Nice pictures and explanations at the following adress :

httpW//stars.astro.illinois.edu/celsph.html

Remark. Why are the hands of a watch going round in the order North-East-South-West-
North ? Because we see the sun going round in this way and if we look at the shadows
of fixed objects they are turning the same way. But in fact it is not the Sun that moves
around the Earth, but the Earth is moving around its axis in the other direction. Therefore
the astronomers and mathematicians have chosen as positive the movement going North-
West-South-East-North. But all this has been thought of in the northern hemisphere. South
of the equator the sun and the shadows are moving in the "positive" way.

§ 3. Geodesics

A geodesic is the shortest path between two points. On the sphere S we have to consider
a curve on the sphere.

Theorem. Let A and B be two points on the sphere S . The shortest path from A to B on
the sphere is the arc of great circle through A and B .
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We give two proofs of this theorem. More precisely, the first proof will prove that the
shortest arc of a circle with endpoints A and B is an arc of the great circle going through A
and B .

3.1 Method based on Archimedes’ intuition

When Archimedes tries to find the length of a circle (that is the value of �), he makes
the following drawing

A B

C

and he argues that if two convex curves from A to B lie inside each other, the shortest one
is the one nearest the straight line AB . Thus

AB <
_

AB < AC C CB

Proof. We look at all the arcs of circles with endpoints A and B . Following Archimedes,
we see that the shortest one will be the one with maximum radius.

The circles are the intersections of the planes containing the line AB and the sphere S .
To make the computations, we take a frame such that A is at the "north pole" and B on the
main great circle. Thus A has coordinates .0; 0; 1/. Let a be the abscissa of the intersection
ofAB with the axisOx. The plane throughAB will intersectOy in a point with coordinates
.0; b; 0/. The equation of the plane P is

x

a
C
y

b
C
z

1
D 1

if a ¤ 0 and b ¤ 0.
When the parameter a is equal to 0, B is at the south pole .0; 0;�1/ and all the circles

through A and B are great circles, all with the same length.
The intersection of the plane with Oy do not exist when the plane is parallel to Oy and

then the equation is x
a
C

z
1
D 1. The parameter b takes the value 0 when the plane is the

plane xOz which has the equation y D 0. When b �! 0, the plane through AB tends to
the plane xOz.
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Let H be the orthogonal projection of O on the plane P . The radius of the circle inter-
section of P and S is R such that

R2 D 1 �OH 2

Let M.x0; y0; z0/ be any point in space. The distance from that point to the plane with
equation ˛x C ˇy C 
z C ı D 0 is given by

dist.M0; P / D
j˛x0 C ˇy0 C 
z0 C ıjp

˛2 C ˇ2 C 
2

The length OH is then

OH D
1q

1C 1
a2
C

1
b2

and
R2 D 1 �

1

1C 1
a2
C

1
b2

The maximum value is obtained for b D 0, which means that the circle is a great circle.�

3.2 Method based on differential geometry and variational computation

The theorem is the same. The proof is different. The distance between two infinitely
near points d` is such that

d`2 D d�2 C sin2 �d'2

Thus if we have a curve from A.�1; '1/ to B.�2; '2/ with parametric equation8<: � D �.t/

' D '.t/

t1 < t < t2

The length of this curve is

L D
Z t2

t1

q
� 0.t/2 C sin2 �.t/'0.t/2 dt

Let us put

L D L.�; � 0; '; '0/ D

q
� 02 C sin2 �'02

The Euler-Lagrange equations tell us that the L is extremal when8̂̂<̂
:̂
@L

@�
�

d
dt

� @L
@� 0

�
D 0

@L

@'
�

d
dt

� @L
@'0

�
D 0

We choose our frame so that A is at the north pole, thus �.t1/ D 0. The second equation is

d
dt

� sin2 � '0

L

�
D 0
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Thus
sin2 �.t/ '0.t/

L.t/
D Constant

With our choice for A, we get Constant D 0, and thus

'0.t/ D 0

or
'.t/ D Constant

This Constant has to be the longitude of B . Notice that the first equation reduces to the
identity 0 D 0.�

3.3 Proof of Euler-Lagrange equations

Theorem. Let L be a function of four variables. Let A.xA; yA/ and B.xB ; yB/ be two
points in R2. For any given path or parametrized curve8<:xDX.t/y D Y.t/

t 2 Œt1; t2�

such that X.t1/ D xA, Y.t1/ D yA, X.t2/ D xB and Y.t2/ D yB , we can compute

S D

Z t2

t1

L.X.t/; X 0.t/; Y.t/; Y 0.t// dt

We suppose all the functions regular enough, at least two times continuously derivable. If a
path is such that S is maximal, then8̂<̂

:
@L

@X
�

d
dt

� @L
@X 0

�
D 0

@L

@Y
�

d
dt

� @L
@Y 0

�
D 0

Proof. Let us consider a family of paths from A to B , parametrized by a parameter �.8<:xDX.t; �/y D Y.t; �/

t 2 Œt1; t2�

and

8̂̂<̂
:̂
X.t1; �/D xA
Y.t1; �/D yA
X.t2; �/D xB
Y.t2; �/D yB

Then S becomes a function of �

S.�/ D

Z t2

t1

L
�
X.t; �/;

@X

@t
.t; �/; Y.t; �/;

@Y

@t
.t; �/

�
dt

The extrema of S are such that dS
d� D 0. Regularity of the functions makes it possible to

derive under the integration sign. Thus

dS
d�
D

Z t2

t1

n @L
@X

@X

@�
C
@L

@X 0
@X 0

@�
C
@L

@Y

@Y

@�
C
@L

@Y 0
@Y 0

@�

o
dt .�/



20 CHAPTER 2. COORDINATES ON A SPHERE

We make the assumption that X and Y have continuous second derivates, thus

@2X

@�@t
D
@2X

@t@�
and thus

@X 0

@�
D

d
dt

�@X
@�

�
Integrating by parts, we haveZ t2

t1

@L

@X 0
@X 0

@�
dt D

Z t2

t1

@L

@X 0
d
dt

�@X
@�

�
dt D

h @L
@X 0

@X

@�

itDt2
tDt1
�

Z t2

t1

@X

@�

d
dt

� @L
@X 0

�
dt

But the functions � 7�! X.t1; �/ and � 7�! X.t2; �/ are constant functions (equal respecti-
vely to xA and xB ). Thus

@X

@�
.t1; �/ D

@X

@�
.t2; �/ D 0

and then Z t2

t1

@L

@X 0
@X 0

@�
dt D �

Z t2

t1

@X

@�

d
dt

� @L
@X 0

�
dt

In the same way, we haveZ t2

t1

@L

@Y 0
@Y 0

@�
dt D �

Z t2

t1

@Y

@�

d
dt

� @L
@Y 0

�
dt

Then equation .�/ becomes

dS
d�
D

Z t2

t1

n @L
@X

@X

@�
�
@X

@�

d
dt

� @L
@X 0

�
C
@L

@Y

@Y

@�
�
@Y

@�

d
dt

� @L
@Y 0

�o
dt

or
dS
d�
D

Z t2

t1

nh @L
@X
�

d
dt

� @L
@X 0

�i @X
@�
C

h @L
@Y
�

d
dt

� @L
@Y 0

�i@Y
@�

o
dt

We want this derivative to be 0 for any choice of the functions @X
@�

and @Y
@�

. One nice

choice would be @X
@�
D

@L
@X
�

d
dt

�
@L
@X 0

�
and @Y

@�
D

@L
@Y
�

d
dt

�
@L
@Y 0

�
. Thus

@L

@X
�

d
dt

� @L
@X 0

�
D 0 and

@L

@Y
�

d
dt

� @L
@Y 0

�
D 0 :

Exercise 3. Show with the help of Euler-Lagrange equations that the (straight) line segment is the shortest path
between two points.

Indications, answers or solutions

Ex 1. The tangents to the sides at the vertices are orthogonal since
in the direction of parallels or meridians. But Q is not a spherical
square or even a spherical rectangular since the sides on the ”paral-
lels” are not geodesics.

Ex 2. 1°) The cartesian coordinates of Joensuu8<:
x D cos. �

180
.62C 35

60
// cos. �

180
.29C 45

60
//D 0;3999769

y D cos. �
180

.62C 35
60
// sin. �

180
.29C 45

60
// D 0;2284869

z D sin. �
180

.62C 35
60
// D 0;8876814
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The cartesian coordinates of Caen8<:
x D cos. �

180
.49C 10

60
// cos.� �

180
. 22
60
//D 0;653847

y D cos. �
180

.49C 10
60
// sin.� �

180
. 22
60
// D�0;0041843808

z D sin. �
180

.49C 10
60
// D 0;75661478

The scalar product is
0;3999769� 0;653847� 0;2284869� 0;0041843808C

C0;8876814� 0;75661478 D 0;932202
The corresponding angle is arccos.0;932202/ D 0;37 radians.
The corresponding distance is then 0;37� 6400 D 2368 km.
Remark. The precise distance between Joensuu and Caen is
2364; 54 km.
2°) The precise distance from Paris to Christchuch is 19090;5 km.
3°) The precise distance from tne North Pole and the South Pole is
20004 km. At the French revolution, it was decided to give a length
unit which would be universal for all humans. The idea was to take
the Earth as a basis. Since the Earth has the shape of an ellipsoid
with cylindrical symmetry, all the shortest lines from one pole to
the other have the same length. The "mètre" would be such that the
quarter of a meridian would be 10000000m. The measure was not
so easy. With the final meter, the length of a quarter of a meridian is
about 10002m.
Quoted from Wikipedia :
For the WGS84 ellipsoid the distance from equator to pole is given
(in meters) by 10001965; 729m.
The World Geodetic System is a standard for use in cartography,
geodesy, and navigation. It comprises a standard coordinate frame
for the Earth, a standard spheroidal reference surface (the datum
or reference ellipsoid) for raw altitude data, and a gravitational
equipotential surface (the geoid) that defines the nominal sea level.
The latest revision is WGS 84 (dating from 1984 and last revised
in 2004), which will be valid up to about 2010. Earlier schemes in-
cluded WGS 72, WGS 66, and WGS 60. WGS 84 is the reference
coordinate system used by the Global Positioning System.

Ex 3. The parametric curve8<:x D x.t/y D y.t/
t 2 Œt1; t2�

and

8̂̂<̂
:̂
x.t1/D xA
y.t1/D yA
x.t2/D xB
y.t2/D yB

describes a path from A to B . The length of this curve is

` D

Z t2
t1

q
x02 C y02 dt

Let us put L D
p
x02 C y02. Since L is independant of x and y,

the Euler-Lagrange equations become

d
dt

� @L
@x0

�
D 0 and

d
dt

� @L
@y0

�
D 0

These equations are easy to solve into

x0p
x02 C y02

D a and
y0p

x02 C y02
D b

where a and b are constants.
If a D 0, we get x0 D 0 and thus x D Constant D xA D xB .
The function y.t/ is arbitrary with the only constraint signy0 is
constant.
If b D 0 same thing as above exchanging x and y.
If a ¤ 0 and b ¤ 0, we get

y0

x0
D
b

a
thus y.t/ D

b

a
x.t/C Constant

Notice that it follows from the equations that the sign of y
0

x0
is

constant. Thus the segment is described only once. Notice that the
"speed" is not determined.
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Chapter 3

Spherical trigonometry

§ 1. Pythagoras’ theorem
§ 2. The three laws of spherical trigonometry

§ 1. Pythagoras’ theorem
1.1 Distance

Definition. Let S be a sphere with radius 1,A andB two points belonging to S . The distance

(on the the sphere) from A to B denoted
_

AB is the length of the shortest arc of great circle
with endpoints A and B .
Remark. If A and B are antipodal, there are infinitely many arcs of great circles with
endpoints A and B , but all have the same length which is � , that is the length of a half-
circle with radius 1.

Theorem. LetO be the center of a sphere S of radius 1. The distance c D
_

AB between two
points A and B is such that

cos c D
�!
OA �

��!
OB 0 6 c 6 �

Let .O;E{; E|; Ek/ be an orthonormal frame. The sphere S is the surface with equation x2C

y2 C z2 D 1. The distance c D
_

AB between two points A.xA; yA; zA/ and B.xB ; yB ; zB/
belonging to S is such that

cos c D xAxB C yAyB C zAzB

A

B

C

23
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1.2 Basic version

Pythagoras’ theorem. Let ABC be a spherical triangle on the sphere S with radius 1. We
put

c D
_

AB a D
_

BC b D
_

CA

We suppose that the triangle is orthogonal in C . Then

cos c D cos a cos b

Proof. Choose the frame .O;E{; E|; Ek/ orthonormal such that Ek D
��!
OC ,A 2half-plane xOz with x > 0

and B 2half-plane yOz with y > 0.
The coordinates of C are .0; 0; 1/, those of A are .sin a; 0; cos a/ and those of B are

.0; sin b; cos b/. Then

cos c D sin a � 0C 0 � sin b C cos a � cos b �

1.3 The case of small rectangular triangles

Let us explain why the theorem above is Pythagoras’ theorem. If the triangle is small,
that is a, b and c are small, then cos a � 1 � 1

2
a2 and cos b � 1 � 1

2
b2 and thus

cos a cos b � .1 �
1

2
a2/.1 �

1

2
b2/ � 1 �

1

2
a2 �

1

2
b2

Using cos c � 1 � 1
2
c2, we then get

c2 D a2 C b2

which is the usual aspect of Pythagoras’ theorem.

§ 2. The three laws of spherical trigonometry

LetABC be a spherical triangle on the sphere S with centerO and radius 1. We suppose
that the sides are all between 0 and � .

0 < aD
_

BC <�

0< bD
_

CA <�

0< c D
_

AB <�

We have the same inequalities for the three angles of the spherical triangle ABC

0< ˛ D angle.planeOAB; planeOAC/ < �
0 < ˇD angle.planeOBC; planeOBA/ < �
0 < 
 D angle.planeOCA; planeOCB/ < �

We are going to show the following three formulae
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The cosinus law

cos a D sin b sin c cos˛ C cos b cos c

and the two other relations deduced from the former one by circular permutation.

The sinus law

sin˛
sin a

D
sinˇ
sin b

D
sin 

sin c

D
Volume.TetrahedronOABC/

sin a sin b sin c

The dual cosinus law

cos˛ D sinˇ sin 
 cos a � cosˇ cos 


2.1 The cosinus law

Let us choose an orthonormal frame .O;E{; E|; Ek/ such that E{ D
�!
OA, E| orthogonal to E{, is

in the planeOAB with E| �
��!
OB > 0 and Ek, orthogonal to both E{ and E| , such that Ek �

��!
OC > 0.

Exercise 1. Draw the picture.
The coordinates of A, B and C are then

A

ˇ̌̌̌
ˇ̌10
0

B

ˇ̌̌̌
ˇ̌cos c
sin c
0

C

ˇ̌̌̌
ˇ̌cos b
sin b cos˛
sin b sin˛

Then the cosinus of the arc a D
_

BC is then
��!
OB �

��!
OC thus

cos a D sin b sin c cos˛ C cos b cos c

2.2 The sinus law

From the cosinus law, we get

cos˛ D
cos a � cos b cos c

sin b sin c

and thus

sin2 ˛ D 1 � cos2 ˛ D
sin2 b sin2 c � cos2 a � cos2 b cos2 c C 2 cos a cos b cos c

sin2 b sin2 c

using sin2 b D 1 � cos2 b and sin2 c D 1 � cos2 c, we get

sin2 ˛ D
1 � cos2 a � cos2 b � cos2 c C 2 cos a cos b cos c

sin2 b sin2 c
or

sin2 ˛
sin2 a

D
1 � cos2 a � cos2 b � cos2 c C 2 cos a cos b cos c

sin2 a sin2 b sin2 c
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and we see that the right hand side of the last equality is invariant by the permutations of
the couples .a; ˛/, .b; ˇ/ and .c; 
/. Thus

sin2 ˛
sin2 a

D
sin2 ˇ
sin2 b

D
sin2 

sin2 c

and
sin˛
sin a

D
sinˇ
sin b

D
sin 

sin c

D‹

How can we interpret the right hand side ? Let us compute the volume V of the tetrahe-
dron OABC

V D
1

6
det.
�!
OA;
��!
OB;
��!
OC/ D

1

6

ˇ̌̌̌
ˇ̌1 cos c cos b
0 sin c sin b cos˛
0 0 sin b sin˛

ˇ̌̌̌
ˇ̌ D 1

6
sin b sin c sin˛

and dividing by sin a, we get

sin˛
sin a

D
6V

sin a sin b sin c

2.3 The dual cosinus law

The dual triangle of a spherical triangle

Theorem and definition. If a, b, c, ˛, ˇ and 
 are the measures of the sides and the angles
of a spherical triangle ABC (on S ) then there are triangles with measures of the sides and
the angles a0, b0, c0, ˛0, ˇ0 and 
 0 such that

a0 D � � ˛ I b0 D � � ˇ I c0 D � � 
 I ˛0 D � � a I ˇ0 D � � b I 
 0 D � � c

Such a triangle is called a dual triangle of ABC .
Proof. We shall construct a triangle A0B 0C 0 having the required properties.

A

B C

D D0

E

E 0F

F 0

A0

B 0 C 0

Construct the arcs of great circles ABD and ACD0 both with measure �
2

. The great
circle through D and D0 is an equator if we take A as a pole.
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Construct in the same way the points E, E 0, F and F 0.
Draw the great circles through D and D0, through E and E 0 and through F and F 0.

Choose the intersection pointsA0,B 0 andC 0 in such a way thatA0B 0C 0 is a ”small” triangle.
On the picture we have choosen the triangle that overlaps the triangle ABC .

Since DD0 D B 0DD0C 0 is an equator with respect to A, we have
_

AB 0 D �
2

and for

the same reason
_

CB 0 D �
2

, thus AC D FACD0 is an equator with respect to B 0 and

then
_

B 0D0 D �
2

. By the same reasoning, we get
_

DC 0 D �
2

. Notice that
_

DD0 D ˛, thus

a0 D
_

B 0C 0 D �
2
C

�
2
� ˛ D � � ˛.

As above we see that F 0BCE is the equator with respect to A0, thus ˛0 D
_

F 0E D
_

F 0C C
_

BE �
_

BC D �
2
C

�
2
� a D � � a.

Proof of the dual cosinus law

From the cosinus law applied to the dual triangle, we get

cos a0 D sin b0 sin c0 cos˛0 C cos b0 cos c0

or
cos.� � ˛/ D sin.� � ˇ/ sin.� � 
/ cos.� � a/C cos.� � ˇ/ cos.� � 
/

that is
� cos˛ D � sinˇ sin 
 cos aC cosˇ cos 


Finally
cos˛ D sinˇ sin 
 cos a � cosˇ cos 
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Chapter 4

Stereographic projection

§ 1. Definition
§ 2. The stereographic projection preserves the angles
§ 3. Images of circles

§ 1. Definition

The stereographic projection is a central projection of a sphere onto a plane when the
center of projection is on the sphere. The tradition is to take the plane horizontal and to take
the North Pole as center of projection. The two most common choices for P are the plane
through the center O and the plane tangent to the sphere ar the South Pole.

Choice N° 1 :

N

M

m

P

O

S

29
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Choice N° 2 :

N

M

m

P

O

S

S0

Definition. Given a sphere S with center O , a plane P and a point N such that N 2 S , that
N … P and that the line NO is orthogonal to P . The stereographic prjection of S on P , is
the map

� W S X fN g �! P;M 7�! m such that the points N; M andm are aligned

Question 1. Why is the map � well-defined ?
Question 2. Is the map � a bijection ?
Question 3. How does the image of S change when the plane P is moving ? More precisely,
let P1 be the plane orthogonal to NO and containing the point O . Let us call �1 the stereo-
graphic projection of S X fN g on P1 and put m1 D �1.M/. Similarly, let P2 be the plane
parallel to P1 containing the south pole S0 and let us call �2 the stereographic projection of
S X fN g on P2 and put m2 D �2.M/. What is the relation between

���!
Om1 and

���!
S0m2 ?

1.1 Choice N° 1 with coordinates

N

M

m

P

O

S
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Let us take an orthonormal frame .O;E{; Ej ; Ek/. The point M.X; Y;Z/ is such that

��!
OM D XE{ C Y E| CZ Ek

The distance OM is such that k
��!
OMk2 D

��!
OM �

��!
OM D X2 C Y 2 C Z2, where � denotes

the scalar product. We suppose that the radius of the sphere is 1. The point M belongs to S
if and only if

X2 C Y 2 CZ2 D 1 .1/

The North Pole is the point N.0; 0; 1/.
The image m D �.M/ is in the plane Z D 0. Let us denote its coordinates by .x; y/ in

the frame .O;E{; Ej /. To say that m is on the line NM , we may say that m is a barycenter of
N and M , that is that there is a real number ˛ such that

��!
Om D .1 � ˛/

��!
ON C ˛

��!
OM

or 24xy
0

35 D .1 � ˛/
2400
1

35C ˛
24XY
Z

35
that is 8<:xD .1 � ˛/ � 0C ˛Xy D .1 � ˛/ � 0C ˛Y

0D .1 � ˛/ � 1C ˛Z

The last equality gives us ˛ :

˛ D
1

1 �Z

and thus 8̂<̂
:
xD

X

1 �Z

y D
Y

1 �Z

Knowing that X2 C Y 2 CZ2 D 1, we can compute the other way round : first we may
write :

X D x.1 �Z/ and Y D y.1 �Z/

Thus Z has to be solution of the equation :

x2.1 �Z/2 C y2.1 �Z/2 CZ2 D 1

or
.x2 C y2 C 1/Z2 � 2.x2 C y2/Z C x2 C y2 � 1 D 0

This second degree equation has reduced discriminant1 :

�0 D .x2 C y2/2 � .x2 C y2 C 1/.x2 C y2 � 1/ D 1

1The reduced discriminant of the equation ax C 2b0x C c D 0 is �0 D b02 � ac and the solutions are

x1 D
�b0C

p
�0

a
and x1 D

�b0�
p
�0

a
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and thus the two solutions are :

Z1 D
x2 C y2 C 1

x2 C y2 C 1
D 1 and Z2 D

x2 C y2 � 1

x2 C y2 C 1

The solution Z D Z1 corresponds to the point N and should be excluded. Thus Z D Z2,
and then we get X and Y and get 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

X D
2x

x2 C y2 C 1

Y D
2y

x2 C y2 C 1

Z D
x2 C y2 � 1

x2 C y2 C 1

1.2 Choice N° 2 with coordinates

N

M

m

P

O

S

S0

Let us take as orthonormal frame .S0;E{; Ej ; Ek/. The point M.X; Y;Z/ is such that

���!
S0M D XE{ C Y E| CZ Ek

The distance S0M is such that k
���!
S0Mk

2 D
���!
S0M �

���!
S0M D X

2CY 2CZ2, where � denotes
the scalar product. We suppose that the radius of the sphere is 1. The point M belongs to S
if and only if

X2 C Y 2 C .Z � 1/2 D 1 .1/

The North Pole is the point N.0; 0; 2/.
The image m D �.M/ is in the plane Z D 0. Let us denote its coordinates by .x; y/ in

the frame .S0;E{; Ej /. To say that m is on the line NM , we may say that m is a barycenter of
N and M , that is that there is a real number ˛ such that

��!
S0m D .1 � ˛/

��!
S0N C ˛

���!
S0M



§ 1.. DEFINITION 33

or 24xy
0

35 D .1 � ˛/
2400
2

35C ˛
24XY
Z

35
that is 8<:xD .1 � ˛/ � 0C ˛Xy D .1 � ˛/ � 0C ˛Y

0D .1 � ˛/ � 2C ˛Z

The last equality gives us ˛ :

˛ D
2

2 �Z

and thus 8̂<̂
:
xD

2X

2 �Z

y D
2Y

2 �Z

Knowing that X2 C Y 2 CZ2 D 2Z, we can compute the other way round and get

.2 �Z/2
x2 C y2

4
CZ2 � 2Z D 0

or
.Z2 � 4Z C 4/.x2 C y2/C 4Z2 � 8Z D 0

that is
.x2 C y2 C 4/Z2 � 4.x2 C y2 C 2/Z C 4.x2 C y2/ D 0

This is second degree equation in Z, with

�0 D 4.x2 C y2 C 2/2 � 4.x2 C y2 C 4/.x2 C y2/ D 42

The roots are

Z1 D
2.x2 C y2 C 2/C 4

x2 C y2 C 4
D 2 and Z2 D

2.x2 C y2 C 2/ � 4

x2 C y2 C 4
D

2.x2 C y2/

x2 C y2 C 4

The root Z1 corresponds to the point N , thus Z D Z2, and

2 �Z D
8

x2 C y2 C 48̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

X D
4x

x2 C y2 C 4

Y D
4y

x2 C y2 C 4

Z D
2.x2 C y2/

x2 C y2 C 4



34 CHAPTER 4. STEREOGRAPHIC PROJECTION

1.3 Lifting

We have seen that the stereographic projection is bijective. Thus we can define the in-
verse map.

Definition. We call lifting the map from the plane P to the set S XfN g which is the inverse
of the stereographic projection of S onto P .

§ 2. The stereographic projection preserves the angles

A transformation is conformal if it preserves the angles.

Theorem. The stereographic projection is conformal.
Let .O;E{; E|; Ek/ be a frame of the usual euclidean space E. The coordinates of a point

M are denoted .X; Y;Z/. The coordinates of a point m in the plane P , which has equation
Z D 0, with frame .O;E{; E|/, are denoted .x; y/. Let S be the sphere with center O and
radius 1.

2.1 Geometric proof

Let H be the halfspace with equation Z < 1. The stereographic map s from S X fN g

on the plane P equatorial relatively to the pole N.0; 0; 1/, can be extended to a map also
denoted by s from H onto P , using the formulae (see §1.1)8̂<̂

:
xD

X

1 �Z

y D
Y

1 �Z

.�/

These functions are C1 (in fact, they are C1 and even analytic). Here also, the image of a
point M is the intersection m of the line NM with the plane P . Let � be any line in E
such that � \H ¤ ¿. If N … �, the image by s of � \H is a line in P . If N 2 �, then
s.� \H/ is only a point, in fact the point � \ P .

Let us suppose that two curves 
1 and 
2 drawn on the sphere S intersect each other in
a point Q and that these two curves have tangents T1 and T2 at that point Q. Notice that T1
and T2 are tangent to S and thus do not contain N . The curves s.
1/ and s.
2/ intersect in
the point Q0 D s.Q/ and have tangents T 01 and T 02 in Q0. Since the map .�/ is C1, we have
s.T1 \H/ D T

0
1 and s.T2 \H/ D T 02. What we have to prove is that the angle .T1; T2/ is

equal to the angle .T 01; T
0
2/.

First step.
We denote by … the median plane of the segment QQ0. Let T be a tangent to the sphere at
the pointQ. Either T is parallel to the plane P or T intersects P in a point A. If T==P , then
the image T 0 D s.T / is parallel to T and both these lines are orthogonal to the lineQQ0 and
thus symetrical relatively to the plane …. If T intersects P in A, the image T 0 D s.T / will
be AQ0 since s.Q/ D Q0 and s.A/ D A. The tangent T intersects also the plane tangent to
S in N . Call A0 the intersection point of T and the plane tangent to S at N . Since A0N and
A0Q are tangent to the same sphere S , the segments A0N and A0Q have same length. But
AQ0 is parallel to A0N and therefore the triangles AQQ0 and A0QN are similar, from what
we get AQ D AQ0 and thus A belongs to ….
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O

Q

Q0A

T

N A0

Second step.
Let T1 and T2 be the two tangents to the curves 
1 and 
2. They are projected in two lines in
P , T 01 and T 02 which are symmetrical to T1 and T2 with respect to the plane… and therefore
we have the equality of angles

.T 01; T
0
2/ D .T1; T2/

�

2.2 Differential proof

To say that s is conformal is to say that the linear tangent map dsQ is a similarity between
euclidean spaces. If we use orthonormal bases and express the linear map dsQ by a matrixA
relatively to these bases, the condition is that there is a real number � such that A tA D �I .
Since we have d`2 D d�2Csin2 �d'2, we take as an orthonormal basis of the tangent space
to S at Q : .d�; sin �d'/. Since8̂̂<̂

:̂
xD

X

1 �Z
D

sin � cos'
1 � cos �

D a.�/ cos'

y D
Y

1 �Z
D

sin � sin'
1 � cos �

D a.�/ sin'
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where a.�/ D
sin �

1 � cos �
, we have(

dxD a0.�/ cos'd� � a.�/ sin'd'

dy D a0.�/ sin'd� C a.�/ cos'd'

or 24dx

dy

35 D
24a0.�/ cos' �

a.�/
sin � sin'

a0.�/ sin' a.�/
sin � cos'

35 24 d�

sin �d'

35 D A
24 d�

sin �d'

35
Let us compute

AATD

24a0.�/ cos' �
a.�/
sin � sin'

a0.�/ sin' a.�/
sin � cos'

3524a0.�/ cos' a0.�/ sin'

�
a.�/
sin � sin' a.�/

sin � cos'

35

D

24cos' � sin'

sin' cos'

3524a0.�/ 0

0 a.�/
sin �

35224 cos' sin'

� sin' cos'

35
But

a0.�/ D
.1 � cos �/ cos � � sin � sin �

.1 � cos �/2
D

cos � � 1
.1 � cos �/2

D �
1

1 � cos �
D �

a.�/

sin �

and

a0.�/2 D
�a.�/

sin �

�2
thus, finally AAT D

�
a.�/
sin �

�2 �1 0
0 1

�
.

ThusA is a similarity matrix and preserves the ratios of scalar products, that is preserves
the angles. The transformation s is conformal. �

§ 3. Images of circles

3.1 Image of one circle

Theorem. The image of a circle C on the sphere S by a stereographic projection with pole
N is

– a line if N 2 C
– a circle if N … C .

Proof. We choose the frame .O;E{; E|; Ek/ such that O is the center of S and
��!
ON D Ek. A

circle C may be defined as the intersection of S with a plane P , that is the set of points
.X; Y;Z/ such that �

X2 C Y 2 CZ2 D 1

˛X C ˇY C 
Z C ı D 0

where .˛; ˇ; 
/ ¤ .0; 0; 0/.
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Let M.X; Y;Z/ be a point belonging to C and let m.x; y/ be its image by the stereo-
graphic projection on the plane xOy. Using the relations obtained in section 1.1.
X D 2x

x2Cy2C1
, Y D 2y

x2Cy2C1
and Z D x2Cy2�1

x2Cy2C1
,

we get ˛ 2x
x2Cy2C1

C ˇ 2y

x2Cy2C1
C 
 x

2Cy2�1

x2Cy2C1
C ı D 0 or

.
 C ı/.x2 C y2/C 2˛x C 2ˇy C .ı � 
/ D 0 .2/

If 
 C ı D 0, it means that the plane P contains the point N.0; 0; 1/ since ˛0C ˇ0C

1C ı D 0.

If .˛; ˇ/ D .0; 0/, the plane P is the plane through N parallel to the plane xOy
and C is the point-circle N . We’l understand later how to interpret the image of
this point-circle.
If .˛; ˇ/ ¤ .0; 0/, the image of C is a line.

If 
C ı ¤ 0, (2) is the equation of a circle with center .� ˛

Cı

;� ˇ

Cı

/ and a radius such
that

R2 D
˛2 C ˇ2 C 
2 � ı2

.
 C ı/2

We see on this expression that the circle is real if and only if ı2 6 ˛2 C ˇ2 C 
2. This
corresponds to a plane P which intersects the sphere S in real points.

Reciprocally, every point of the circle or line .2/ is the image of a point on C .
It is also easy to see that the lifting of any circle or line in P is a circle on S .�

3.2 Pencils of curves in the plane

Definition. Let C0 and eC be two curves with equations

f0.x; y/ D 0 and ef .x; y/ D 0
the pencil of curves determined by C0 and eC is the set of curves with equations

�f0.x; y/C �ef .x; y/ D 0
where .�; �/ ¤ .0; 0/.

Example. Let C0 and eC be the lines with equations

f0.x; y/ � x � y � 1 D 0 and ef .x; y/ � x C 2y � 4 D 0
We note that C0 and eC intersect each other in the point .2; 1/. Then for any choice of .�; �/,
distinct from .0; 0/,

.�f0 C �ef /.x; y/ � .�C �/x C .��C 2�/y C .�� � 4�/ D 0
is the equation of a line C containing the point .2; 1/. Reciprocally, given any line C contai-
ning the point .2; 1/ there are couples .�; �/ such that the equation of C may be written
.�f0 C �ef /.x; y/ D 0 : the pencil induced by C0 and eC is the set of all the lines through
the point .2; 1/.
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O

y

x2

1

C0

eC

Ct .t D �
1
3
/

example : � D 3; � D �1

Ct (t D 2
7

)

Exercise 1. Show that if a lineD is going through the point .2; 1/ then there is a couple .�;�/ of real numbers
such thatD has the equation

.�f0 C�ef /.x; y/ D .�C�/xC .��C 2�/y C .��C 4�/ D 0
Comments. Let us denote C0@�

�

1A.x; y/ D 0 the curve with equation

f0@�
�

1A.x; y/ � �f0.x; y/C �ef .x; y/ D 0
There is only one curve in the pencil with � D 0, it is the curve eC . For all other curves in
the pencil � ¤ 0 and we have

C0@�
�

1A D C0@1
�
�

1A
We put t D �

�
and we denote simply by Ct the curve C0@1

t

1A. For every real t we have one

curve Ct D C0 C teC . As a consequence we see that if we exclude the curve eC , we have
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a bijection of the pencil of curves with the real line. To get a bijection with the complete
pencil, we have to add one element to R. It is a habit to denote that extra element by1 and
call it ”point at infinity” of the real line. Then we denote eC by C1.

C0 C1 Ct

C1 C1

But we can as well decide to draw C1 in our page. Thus we get the following picture
of the set of curves in the pencil

C0 C1 C1

C�1 C�1

The following definition of the projective line will make everything clear.

Definition. In PP D R2 n f.0; 0/g the relation � defined by

.�; �/ � .�0; �0/
definition
” ��0 D �0�

is an equivalence relation. The quotient of PP by � is the real projective line, denoted by OR,
by P 1.R/ or by RP 1.

C0 C1

Ct

C1

�

�

1

1

t
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If we want to show the fact that C0 and C1 play symmetrical roles, we cut the lines by
the line �C � D 1

C0 C1

C�1

C�1

C11

1

3.3 Examples of pencils

Pencils of lines in a plane

1. Pencil of intersecting lines.
See the picture page 38.

Theorem. Given two distinct lines L1 and L2 with equations

a1xCb1yCc1 D 0; .a1; b1/ ¤ .0; 0/ and a2xCb2yCc2 D 0; .a2; b2/ ¤ .0; 0/

intersecting in the pointM0.x0; y0/, that is such that a1b2�b1a2 ¤ 0, c1 D �a1x0�b1y0
and c2 D �a2x0 � b2y0, the set of lines through M0 is the pencil of lines determined by
L1 and L2.
Proof. Let .�; �/ ¤ .0; 0/ and define f W R2 �! R by

f .x; y/ D �.a1x C b1y C c1/C �.a2x C b2y C c2/

We have f .x; y/ D ax C by C c where

a D �a1 C �a2; b D �b1 C �b2 and c D �c1 C �c2

We have to show that .a; b/ ¤ .0; 0/ and c D �ax0 � by0.
If .a; b/ D .0; 0/, since a1b2 � b1a2 ¤ 0, we would have .�; �/ D .0; 0/ which is

contrary to the hypothesis.
By direct computation we have c D �c1C�c2 D �.�a1x0�b1y0/C�.�a2x0�b2y0/

D �.�a1 C �a2/x0 � .�b1 C �b2/y0 D �ax0 � by0.
Reciprocally, let L be a line through M0. The equation of L may be written

ax C by C c D 0 with .a; b/ ¤ .0; 0/ and c D �ax0 � by0
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We have to show the existence of a couple .�; �/ such that

.�; �/ ¤ .0; 0/ and a D �a1 C �a2; b D �b1 C �b2 and c D �c1 C �c2

The linear system in .�; �/ �
a1�C a2�D a

b1�C b2�D b

has a unique solution since a1b2�b1a2 ¤ 0. This solution cannot be .0; 0/ because .a; b/ ¤
.0; 0/. Finally we check

c D �.a1�Ca2�/x0�.b1�Cb2�/y0 D �.�a1x0�b1y0/C�.�a2x0�b2y0/ D �c1C�c2

2. Pencil of parallel lines.

L2

L1

Theorem. Given two distinct parallel lines L1 and L2 with equations

a1xCb1yCc1 D 0; .a1; b1/ ¤ .0; 0/ and a2xCb2yCc2 D 0; .a2; b2/ ¤ .0; 0/

that is such that a1b2 � b1a2 D 0 and a1c2 � c1a2 ¤ 0 or c1b2 � b1c2 ¤ 0, the pencil of
lines determined by L1 and L2 is the set of lines parallel to L1 (and L2) union an extra line
”the line at infinity of the plane”.

Exercise 2. Why is the set of lines parallel to L1 (and L2) not a complete pencil ?

Pencils of planes in space

Exercise 3. Define pencils of intersecting planes along a line and pencils of parallel planes.
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Pencils of circles in a plane

1. Elliptic pencil of circles or pencil of circles with base points.

Theorem and definition. Let A and B be two points in an affine euclidean plane, the set of
circles containing A and B is the pencil defined by any two of these circles. The points A
and B are called the base points of the pencil of circles. This pencil is called elliptic.

y

xAB

Equations of the circles of an elliptic pencil of circles.
Let us choose the middle of the segment AB as origin O and Ox such that the coordi-

nates ofA are .a; 0/ and thenB.�a; 0/. A circle containingA andB has its center� onOy.
Write .0; t/ the coordinates of �, the equation of the circle with center � and containing A
and B is x2 C .y � t /2 � .a2 C t2/ D 0 or

x2 C y2 � 2ty � a2 D 0

Proof of the theorem. The pencil of curves determined by any two distinct circles contai-
ning A and B is the set of all curves with equation

�.x2 C y2 � 2t1y � a
2/C �.x2 C y2 � 2t2y � a

2/ D 0

where t1 ¤ t2 and .�; �/ ¤ .0; 0/, that is the line y D 0 if � C � D 0 and the circle
containing A and B with center .0; �t1C�t2

�C�
/ if �C � ¤ 0.�
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2. Hyperbolic pencil of circles or pencil of circles with limit points.

Theorem et definition. Let C1 and C2 be two disjoint circles with distinct centers in an
affine euclidean plane. The pencil defined by these two circles contains two circles with
radius 0 : let us call the centers of these point-circles A and B . The points A and B are
called the limit points of the pencil of circles. This pencil is called hyperbolic.

y

xAB

Proof.
Let �1 and �2 be the centers of the circles C1 and C2. Let us choose the line �1�2 as

the line x0Ox. The equations of C1 and C2 may be written

.x � !1/
2
C y2 � r21 D 0 and .x � !2/

2
C y2 � r22 D 0

where !1 et !2 are the abscissae (or abscissas) of �1 and �2 and r1 and r2 are the radii (or
radiuses) of C1 and C2.

The circles C1 and C2 have common point(s) if and only if

jr2 � r1j 6 j!2 � !1j 6 r1 C r2

This condition may be written

.r2 � r1/
2 6 .!2 � !1/2 6 .r2 C r1/2

or
�2r1r2 6 .!2 � !1/2 � .r21 C r

2
2 / 6 2r1r2

or even �
.!2 � !1/

2
� .r21 C r

2
2 /
�2 6 4r21 r22
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Thus C1 and C2 have no common point if and only if�
.!2 � !1/

2
� .r21 C r

2
2 /
�2
> 4r21 r

2
2 .�/

The circles in the pencil determined by C1 and C2 have the equations

�
�
.x � !1/

2
C y2 � r21

�
C .1 � �/

�
.x � !2/

2
C y2 � r22

�
D 0

or
x2 C y2 � 2.�!1 C !2 � �!2/x C !

2
2 � r

2
2 C �.!

2
1 � r

2
1 � !

2
2 C r

2
2 / D 0

or even

.x�.�!1C!2��!2//
2
Cy2�.�!1C!2��!2/

2
C!22 �r

2
2C�.!

2
1 �r

2
1 �!

2
2Cr

2
2 / D 0

It is possible to find two circles with radii equal to 0 if and only if there are two real values
of � such that

�.�!1 C !2 � �!2/
2
C !22 � r

2
2 C �.!

2
1 � r

2
1 � !

2
2 C r

2
2 / D 0

or
.!1 � !2/

2�2 C
�
� .!1 � !2/

2
C .r21 � r

2
2 /
�
�C r22 D 0

The condition is that the discriminant � of that equation of the second degree in � is such
that � > 0, where

� D Œ.!1 � !2/
2
� .r21 C r

2
2 /�2 � 4r

2
1 r
2
2

We see that � > 0 is equivalent to .�/.�
Consequence. Instead of taking the two circles C1 and C2 to determine a hyperbolic pencil
of circles, one may take the two distinct point-circles, the limit points of the pencil.

Equations of the circles of an hyperbolic pencil of circles
Let us take as limit-points the points A.a; 0/ and B.�a; 0/. The two point-circles have

the equations
.x � a/2 C y2 D 0 and .x C a/2 C y2 D 0

or
x2 C y2 � 2ax C a2 D 0 and x2 C y2 C 2ax C a2 D 0

Thus the pencil contains the line x D 0 and the circles with equations

x2 C y2 � 2tx C a2 D 0 where t 2 R
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3. Parabolic pencil of circles or pencil of tangent circles.

Theorem et definition. Let C1 and C2 be two disjoint circles tangent in a point T ; the
pencil defined by these two circles contains the line ƒ tangent at T to these two circles and
all the circles containing T and tangent to two the line ƒ. This pencil is called parabolic.

4. What have we forgotten ?
There are three other types of ”circle”-pencils ; the notation ”circle” is to say ”circle or

line” :

1. Pencil of concentric circles

2. Pencil of convergent lines

3. Pencil of parallel lines

We’l see later how these pencils can be included in the former three types of pencils.

3.4 Orthogonal circles and lines ; orthogonal pencils of circles in the plane

Definition. Two circles are orthogonal if the tangents to the circles at their common points
are orthogonal. The definition may be extended to ”circles” in the meaning of ”circles or
lines”.

Theorem. Two circles C1 and C2 with centers �1 and �2 and radii R1 and R2 are ortho-
gonal if and only if

d2 D R21 CR
2
2

where d D �1�2 is the distance between the centers of the circles C1 and C2.
A circle C with center� and a lineƒ are orthogonal if and only if� 2 ƒ, that is if and

only if the line is a diameter of the circle.
Two lines are orthogonal if they are orthogonal in the usual meaning.
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Proof. Let T and T 0 be the common points to the circles C1 and C2, if there are any. By
symmetry relatively to the line �1�2 the angles of the tangents to the circles at T and at
T 0 are equal. Since the tangent to a circle at a point T belonging to the circle is the line
orthogonal to the radius ending at T , the circles will be orthogonal if and only if the triangle
�1T�2 is a right triangle or by Pythagoras’ theorem

d2 D R21 CR
2
2

C2C1

�1 �2

T

T 0

Theorem. Two circles or lines with equations

˛1.x
2
C y2/� 2a1x � 2b1yC 
1 D 0 and ˛2.x

2
C y2/� 2a2x � 2b2yC 
2 D 0

where .˛1; a1; b1/ ¤ .0; 0; 0/ and .˛2; a2; b2/ ¤ .0; 0; 0/ are orthogonal if and only if

˛1
2 C 
1˛2 � 2a1a2 � 2b1b2 D 0

Proof. We first consider the situation when the curves are circles with centers �1 and �2.
These centers have the coordinates .a1; b1/ and .a2; b2/, thus

d2 D
�
�1�2

�2
D

�a1
˛1
�
a2

˛2

�2
C

� b1
˛1
�
b2

˛2

�2
On the other hand, the radius R1 of C1 is such that the equation of C1 is .x � a1

˛1
/2 C

.y � b1
˛1
/2 D R21, thus

R21 D
�˛1
1 C a

2
1 C b

2
1

˛21

and similarly R22 D
�˛2
2Ca

2
2
Cb2

2

˛2
2

. The condition d2 D R21 CR
2
2 becomes

�a1
˛1

�2
C
� b1
˛1

�2
C
�a2
˛2

�2
C
� b2
˛2

�2
�2
a1a2

˛1˛2
�2

b1b2

˛1˛2
D
�a1
˛1

�2
C
� b1
˛1

�2
C
�a2
˛2

�2
C
� b2
˛2

�2
�

1

˛1
�

2

˛2
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Simplyfying and reducing to the same denominator, we get the result.
If at least one of the ”circles” is a line, it is easy to check that the relation is still valid.

�

Definition. Two pencils of circles are orthogonal if every circle of one pencil is orthogonal
to every circle in the other pencil.

Theorem. The hyperbolic pencil of circles with limit points A and B is orthogonal to the
pencil of circles with base points A and B .

The pencil of concentric circles with center� is orthogonal to the pencil of lines through
�.

The elliptic pencil of circles tangent to the line ƒ at point T is orthogonal to the elliptic
pencil of circles tangent to the line ƒ0 at point T , where ƒ0 is the line containing T and
orthogonal to ƒ.

The pencil of lines parallel to a line ƒ is orthogonal to the pencil of lines parallel to any
line ƒ0 orthogonal to ƒ.
Proof. Let us choose coordinates in such a way that A.0; a/ and B.0;�a/. The circles of
the pencil with limit-points A and B have equations

x D 0 or x2 C y2 � 2tx C a2 D 0

that is

˛1 D 0; a1 D 1; b1 D 0; 
1 D 0 or ˛1 D 1; a1 D t; b1 D 0; 
1 D a
2

The circles of the pencil with base-points A and B have equations

y D 0 or x2 C y2 � 2t 0y � a2 D 0

that is

˛2 D 0; a2 D 0; b2 D 1; 
2 D 0 or ˛2 D 1; a2 D 0; b2 D t
0; 
2 D �a

2

Using the previous theorem, the four identites we have to verify are thus

0 � 0C 0 � 0 � 2 � 1 � 0 � 2 � 0 � 1D 0

0 � .�a2/C 1 � 0 � 2 � 1 � 0 � 2 � 0 � t D 0

1 � 0C a2 � 0 � 2 � t � 0 � 2 � 0 � 1D 0

1 � .�a2/C a2 � 1 � 2 � t � 0 � 2 � 0 � t 0D 0

which are trivial.
The cases of other pencils are even simpler to verify.�
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3.5 Orthogonal circles and lines and orthogonal pencils on the sphere

Definition. A pencil of circles on the sphere is the set of intersections of the sphere with the
planes of a pencil of planes in space.

The pencil of planes is characterized either by a common line ƒ or by a common di-
rection of planes (when all the planes are parrallel to each other). The parallel case may be
considered as a special case of the general case, when the common line is ”at infinty”.

There are 3 possibilities : the line ƒ cuts the sphere S in two points A and B : the
corresponding pencil of circles is the set of all circles on S containing A and B . If ƒ is
tangent to S , we gat the set of circles on S tangent to ƒ. If ƒ does not cut the sphere, we
can take the two planes in the pencil of planes which are tangent to S : the contact points
are point-circles...

By the lifting from the plane to the sphere, two orthogonal pencils of circles have images
which are orthogonal pencils on the sphere associated to two linesƒ1 andƒ2 orthogonal to
each other and such that the center O of the sphere belongs to the common orthogonal line
cutting ƒ1 and ƒ2 in points H1 and H2 such that OH1 �OH2 D 1(D R2).

Now we have to draw a nice picture with ”cabri 3D”.
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Projective geometry

§ 1. First description of the real projective plane
§ 2. The real projective plane
§ 3. Generalisations

§ 1. First description of the real projective plane

The projective geometry is beautiful, it is easy when you get rid of some prejudices, it
is effective for solving many problems and it unifies many different aspects of mathematics.
We start with "concrete" way to look at this geometry.

1.1 How to describe a line in the plane ?

Let .O;E{; E|/ be a frame of a plane P .
There are two usual way to describe a line in the plane P :

y D mx C p .1/ and ax C by C c D 0 .2/

The formula .1/ is nice to describe a function (an ”affine function”), but it is not convenient
for geometry because you do not get the ”vertical” lines, the lines parallel to the vector E| .

The formula .2/ is nice for geometry because it is able to describe all the lines in the
plane P . But it has (at least) two drawbacks :

1. all triplets .a; b; c/ are not convenient. We have to exclude those where .a; b/ D .0; 0/ i.e. a D 0 and
b D 0.

2. two triplets .a; b; c/ and.a0; b0; c0/ describe the same line if there are proportional

a0

a
D
b0

b
D
c0

c
.3/

Note that the relation .3/ is not so convenient when some of the coefficients are 0. It is
better to say that the vectors .a; b; c/ and .a0; b0; c0/ are colinear or linearly dependant.

These drawbacks are inherent to the affine geometry we are using. They will loose their
acuity in the projective geometry. So we’ll go on with the formula .2/.

49
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1.2 A first prejudice to get rid of

Prejudice 1. A line is a set of points.
It is easier to think of the set of points as a set P and the set of lines as another set L.

Then one has to define a relation between these two sets.
Let us stick to formula .2/ : we say that a point M described by .x; y/ is on the line d

described by .a; b; c/ if and only if .2/ holds. The other way round we say that the line d
goes through the point M .

We see here the duality between points and lines. This duality is not perfect, there are
exceptions but the dual of the statement : ”There is one and only one line going through
two given distinct points” would be : ”There is one and only one point lying on two given
distinct lines”. We have to add :”non parallel”. With the projective geometry we’ll get rid
of that adendum. The first step will be to modify the presentation of our formula to enhance
this duality.
Dead ends. One idea could be : since proportional triplets describe the same line, let us
choose a specific one. If we take b D �1 or any non zero constant, we are back to the ”bad”
formula .1/. But let us try c D 1, then the equation .2/ becomes

axC by C 1 D 0 or axC by D �1 or
�
a b

� �x
y

�
D �1 or

�
a b 1

�24xy
1

35 D 0
It is indeed nice and symmetrical, but we have lost all the lines going through the origin

O . The dual relation of parallelisme for lines would be for points : the points .x; y/ and
.x0; y0/ such that xy0�yx0 D 0 are kind of ”parallel points”. We have indeed the symmetry
between points and lines, but what we have obtained is to transfer to the points the draw-
backs of not intersecting distinct lines. The optimal solution is the other way round to get
even parallel lines to intersect. Instead of trying to get the lines look as points, we’ll try to
get the points look like lines. That will be done introducing homogenous cordinates.

1.3 The homogenous coordinates

Definition. Let .x; y/ be the coordinates of a point M in P . We call homogenous coordi-
nates of M all triplets .X; Y;Z/ such that :

x D
X

Z
and y D

Y

Z
and Z ¤ 0

Theorem. A pointM with homogenous coordinates .X; Y;Z/ is on the line d described by
the triplet .a; b; c/ if and only if

�
a b c

�24XY
Z

35 D 0 .4/

Proof. The relation axC byC c D 0 becomes aX
Z
C b Y

Z
C c D 0 or aX C bY C cZ D 0.

We can go the way back since Z ¤ 0. �
Remark. We’l take care of the case Z D 0 later on.
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Let us take two distinct points, that is .X; Y;Z/ and .X 0; Y 0; Z0/ non proportional (or
linearly independant), then there is one and only one triplet up to a multiplicative constant
.a; b; c/ such that .4/. Explicitly8<:aD �.YZ

0 �ZY 0/

bD �.ZX 0 �XZ0/

c D �.XY 0 � YX 0/

where � is any number different from 0

How do we get that result ? We have to solve the following system of 2 equations with 3
unknowns a, b and c :�
XaC Y b C Zc D 0

X 0aC Y 0bCZ0c D 0
where XY 0 � YX 0 ¤ 0 or YZ0 �ZY 0 ¤ 0 or ZX 0 �XZ0 ¤ 0

You may solve the system the way you like. An easy way to do it is to think of .X; Y;Z/,

.X 0; Y 0; Z0/ and .a; b; c/ as vectors
�!
U ,
�!
U 0, where

�!
U and

�!
U 0 are not colinear, and �!v in

a 3-dimensional euclidean space and look for �!v orthogonal to both
�!
U and

�!
U 0. Then the

solution is colinear to the vectorial product, that is �
�!
U ^
�!
U 0. Thus we have proved

Theorem. There is one and only one line which goes through two distinct points with ho-
mogenous coordinates .X; Y;Z/ and .X 0; Y 0; Z0/ with Z ¤ 0 and Z0 ¤ 0.

We may look at the dual problem. Let us take 2 distinct lines .a; b; c/ and .a0; b0; c0/
with bc0 � cb0 ¤ 0 or ca0 � ac0 ¤ 0 or ab0 � ba0 ¤ 0. If the lines are not parallel, we have
ab0 � ba0 ¤ 0 and the system of 2 equations with 3 unknowns X , Y and Z :�

aX C bY C cZ D 0

a0X C b0Y C c0Z D 0
where ab0 � ba0 ¤ 0

You may solve this system using the computations done above and get8<:X D �.bc
0 � cb0/

Y D �.ca0 � ac0/

Z D �.ab0 � ba0/

where � is any number different from 0

You even get from the inequality that Z ¤ 0, thus

Corollary. There is one and only one point which is on two distinct non parallel lines.

1.4 Inventing a new line and new points

The triplet .a; b; c/ D .0; 0; 0/ does not describe any line, since for any .X; Y;Z/ we
have aX C bY C cZ D 0. So we have to exclude these triplets. In the same way we have
to exclude the triplet .0; 0; 0/ for points. But we accept all the other triplets.

Prejudice 2. One knows what goes on at infinity.
Many people are so used with the standard geometry that they feel they know what

happens at infinity and that it is a kind of experimental knowledge. But try to travel to
infinity and come back and tell us the truth ! Infinity is a mathematic concept, certainly not
an experimental one.
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Definition. We call line at infinity the line described by any triplet .0; 0; c/ where c ¤ 0.

Definition. We call points at infinity the points with homogenous coordinates .X; Y;Z/
such that Z D 0 and .X; Y / ¤ .0; 0/.

Theorem. A point is at infinity if and only if it is on the line at infinity.
Proof. The relation aX C bY C cZ D 0 for a D b D 0 and c ¤ has the solution Z D 0

and since we want .X; Y;Z/ ¤ .0; 0; 0/, we have .X; Y / ¤ .0; 0/. �

Provisional definition. A projective plane is caractrized by the three following sets :

1. the set of points P with homogenous coordinates .X; Y;Z/ such that .X; Y;Z/ ¤ .0; 0; 0/

2. the set of lines L with homogeneous coordinates .a; b; c/ such that .a; b; c/ ¤ .0; 0; 0/

3. the relation M is on d or d goes through M is defined by

�
a b c

�24XY
Z

35 D 0
In a projective plane we have the following dual theorems :

Theorem. Given two distinct points, there is one and only one line going through these two
points.

Theorem. Given two distinct lines, there is one and only one point on these two line.
Proof. We may now solve the same systems as before but without exception.�

§ 2. The real projective plane

2.1 Definition

Let E be a 3-dimensional real vector space. We denote by 0 the null vector and we put
E� D E X f0g.

Definition. Two vectors u and v belonging to E are colinear if there is a real number k such
that u D kv or if there is a real number h such that v D hu.

Proposition. For any vector u in E, the vectors u and 0 are colinear.
Proof. We may write1 0 D 0 u.�

Proposition. For any vectors u and v in E�, the following assertions are equivalent

(i). the vectors u and v are colinear

(ii). there is a real number k such that u D kv

(iii). there is a real number h such that v D hu.

Proof. By definition of colinearity (i)H)(ii) and (i)H)(ii). Suppose (ii) ; since u 2 E�,
u ¤ 0 and thus k ¤ 0 and we may multiply both sides of the equality by k�1 and thus (iii)
is verified with h D k�1. In the same way (iii)H)(ii). Finally (ii)H)(i) and (iii)H)(i) by
definition.�

1The symbol 0 has two different meanings. We should write : ”null vectorD real number zerou”.
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Proposition and notation. The relation ”to be colinear” is an equivalence relation in E�.
We denote that equivalence relation by /.
Proof. It is trivial to check that the relation ”to be colinear” is reflexive (since u D 1u)
and symmetrical. Let us show that the relation is transitive in E� : suppose that u, v and
w belong to E� and that u and v are colinear and v and w are colinear. From the previous
proposition, we have real numbers k and k0 such that v D ku and w D k0v, thus w D
.kk0/u and u and w are colinear.�

Definition 1. The projective plane P associated to the 3-dimensional real vectorspace E is
the set E0= /. The elements of P are called points.

Thus a point in P is a set of colinear vectors different from 0. If M is a point in P and
if u is a vector belonging to M then

M D R� u where R� D R X f0g

(Homogeneous) coordinates of a point in a projective plane

Definition. Let .�;E{; E|; Ek/ be a basis in E. Let M 2 P . We call homogeneous coordinates
the coordinates .X; Y;Z/ of any vector u D XE{ C Y E| CZ Ek belonging to M .

2.2 Equivalent definitions

The following definition is the simplest and the best one. It is clear that it is eqivalent to
the definition 1.

Definition 2. The projective plane P associated to the 3-dimensional real vectorspace E is
the set of 1-dimensional subspaces. The elements of P are called points.

Our third definition will be convenient to try to visualize the projective plane. It supposes
that we have put a euclidean structure on the space E and to show the equivalence of that
definition with the previous ones, one would have to show that the result is independant of
the choice of the scalar product on E. We’ll skip that proof and suppose it is evident

Definitions. Let E be a 3-dimensional euclidean linear space. The unit sphere † is the set
of vectors with norm 1

† D fu 2 E j kuk D 1g

If we choose an orthonormal basis in E, the sphere † has the equation

X2 C Y 2 CZ2 D 1

Two vectors u and v belonging to † are opposite if u D �v.

Proposition. The relation ”to be opposite” is an equivalence relation on the sphere. We’ll
denote it by$. The classes of equivalence are the pairs of opposite vectors.

Definition 3. The projective plane P associated to the 3-dimensional real vectorspace E
is the set †=$. The elements of P are called points. Thus the points of P are (in this
definition) pair of opposite vectors belonging to the unit sphere.
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2.3 The affine plane associated to a frame of a projective plane

Let .�;E{; E|; Ek/ be a basis in E and let P be the projective plane associated to E. Let
P be the plane in E which has the equation Z D 1. An element m in P is a vector in E
and a point in P . For each point m 2 P , there is one and only point M in P such that
m 2M , that is the point M D R�m. If the coordinates of m are .x; y; 1/, the homogenous
coordinates of M are .X; Y;Z/ D .kx; ky; k/, where k 2 R�.

The other way round is not so simple : given a point M in P , is it possible to find a
pointm in the plane P such thatM D R�m ? If .X; Y;Z/ are the homogenous coordinates
of M , the coordinates of m has to be .x; y; 1/ such that .X; Y;Z/ D k.x; y; 1/. That is
possible if and only if Z ¤ 0, and then x D X

Z
and y D Y

Z
.

Thus we may consider the affine plane P as a subset of the projective plane P .

�
E{

E{

E|

E|

Ek D O

P

m

M D R�m

Starting from the affine plane P to get the projective plane P we have to add all the
projective points R� u where the vector u is parallel to the plane P . That means that we
have to add a projective line. We define projective lines in next paragraph.

The general method to get results about the affine plane using the projective plane

Method. Task : to solve a problem in the affine plane.
We add to the affine plane the line at infinity, getting a projective plane. Then we change

the basis in the 3-dimensional space and we look at the new affine plane. The problem might
be much simpler to solve in this new affine plane. Once it is solved, we move back to the
original basis and the original affine plane.
Example. Some aspects of the following example of proof using projective geometry may
seem awkward but it will be clearer later on. The purpose of having this example here is to
show the efficiency of the theory as soon as possible

Pappus’s theorem. . LetA,B and C be 3 aligned distinct points,A0,B 0 and C 0 be 3 distinct
points aligned on an other line. We call D the intersection of the lines BC 0 and B 0C , E the
intersection of the lines CA0 and C 0A and F the intersection of the lines AB 0 and A0B .
Then the points D, E and F are aligned.
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Proof. Take as line at infinity the line FE, we have to show that D is at infinity, that is that
the lines BC 0 and B 0C are parallel. Just draw the picture : since E is at infinity, the lines
CA0 and AC 0 are parallel and since F is at infinity the lines AB 0 and BA0 are parallel. We
do not know if the lines AB and A0B 0 are intersecting in a point colinear with F and E or
not. So we have to look at two different cases. Let us first suppose that their intersection
point S is not on the line FE, thus not at infinity. We get the following drawing :

Our problem has become : points S , A, B and C aligned, points S , A0, B 0 and C 0

aligned. Knowing that AC 0 k CA0 and AB 0 k BA0, show that BC 0 k CB 0. The dilation ı1
with center S that transforms B in A, transfroms A0 into B 0 ; the dilation ı2 with center S
that transforms A in C , transfroms C 0 en A0. Since the dilations with same center commute,
the dilation ı2 ı ı1 is a dilation that transforms B into C and C 0 into B 0 and the line BC 0

into a parallel line CB 0.
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If the point S is on the line, that is S is at infinity, then the lines AB and A0B 0 are
parallel and we have the following picture :

The proof is the same as the previous one : you just have to change dilations into trans-
lations.�

2.4 The real projective lines in the projective plane

We have allready used lines in the projective plane, but it was more or less intuitive,
since we have’nt given any definition yet. First we’ll define a real projectif line in itself and
then we’ll define the lines in the projective plane P . For that purpose the definition 2 might
be the easiest one.

Definition. Let F be a 2-dimensional real vector space (or linear space). The projective line
L associated with F is the set of 1-dimensional subspaces.

Let .E{; E|/ be a basis of F . The set of vectors with coordinates .X; 1/ is the set of points
of an affine lineL. Each point ofL belongs to one and only point in L. But there is one point
in L that does not contain any elemet of L ; it is the subspace RE{. Thus we may consider L
to be L and one extra point. We call that extra point the point at infinity of L. Let us denote
it by1L, we have

L D L [ f1Lg

L

1L

E{

E{E|
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Definition. Let E be a 3-dimensional real vector space and let P be the projective plane
associated with E. We call projective lines in P the projective lines L associated with the
2-dimesional subspaces F of E.

Notice that P D P [L, where L is the projective line associated with the 2-dimensional
linear subspace

�!
P ofE parallel to P . When you have the projective planeP you can choose

any line as line ”at infinity” and if you take away that line, what is left is an affine plane.

P

�!
P

� E{

E|

E{

E|

O

2.5 Desargues’s theorem

Definitions. Let ABC and A0B 0C 0 be two triangles with sides which are lines denoted
a D BC , b D CA, c D AB , a0 D B 0C 0, b0 D C 0A0 and c0 D A0B 0. We say that the two
triangles are centraly perspective if the lines AA0, BB 0 and CC 0 are concurrent in a point
S or parallel (that means concurrent at a point S at infinity). The two triangles are linely
perspective if the intersection points of a and a0, b and b0 and c and c0 are aligned on a line
s or if a==a0, b==b0 and c==c0.

Theorem. Two triangles are centraly perspective if and only if they are linely perspective.
The proof is left as an exercise. Use the same method as for the proof of Pappus’s

theorem.

2.6 Topology of the real projective line and of the real projective plane

Let L be an affine line. Let us put it in an affine euclidean plane with orthonormal frame
.O;E{; E|/ as the x-axis and draw the circle � with diameter the points O.0; 0/ and N.0; 1/.
To each point m of L, we associate the point M on � such that N , M and m are aligned.
We have a bijection. If we want to get a bijection with L we have to add the point N and
thus we ”see” that the real projective line ”is” a circle.
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Topology of the real projective line as a half circle

We may also consider the real projective line as a circle divided by the equivalence
relation ”to be opposite to”. Thus the line becomes a half circle where we have to identify
the two ends :

and the points A and B are the same point.

Topology of the real projective plane

We follow the same procedure as for the line, but now we start with a half sphere. But
now the border is a circle and we have to glue together opposite points : that is not so easy
because yo have to progress in the same direction. If you could go in opposite directions
you would get a ”topological” sphere.

Another way to do it is to cut the sphere into three parts : a narrow belt arround the
equator and two nearly halfspheres which are topologically equivalent to discs. These discs
are opposite, so we can keep just one. It is a bit harder with the belt : you have to keep only
half of it. Let us cut it along two opposite ”vertical” cuts. You get to vertical cuts and now
you have to glue them one up one down getting a ... Möbius strip. Finally the projective
plane is a Möbius strip glued to a disc allong its unique side. Not easy to see, but what is
easy to understand is that the real projective line and the real projective plane are compact
because closed and bounded in some space of sitable dimension.

§ 3. Generalisations

3.1 Projective spaces

Change the dimensions : linear space of dimension n C 1. The set of 1-dimensional
subspaces is a projective space of dimension n.

3.2 Projective complex spaces

Change R into C. For instance the projective complex line is the ”complex plane” to
which is added ONE point : THE point at infinity. By stereographic projection it is the
image of the North Pole.


