Mensajes recientes

Páginas: [1] 2 3 ... 10
1
Gen 3D / Bienvenidos a Gen 3D
« Último mensaje por moyack on Agosto 19, 2022, 04:11:00 pm »
Proyecto GEN 3D

Introducción

En la actualidad, el quehacer en el aula no se adapta a las necesidades e intereses individuales de los estudiantes, lo que conlleva a que no siempre se logren los resultados académicos y convivenciales necesarios para que el estudiante sea un actor activo de su comunidad.

Con los desarrollos tecnológicos actuales y las nuevas tendencias sociales, comunicativas y laborales, se han impuesto nuevas condiciones y competencias que debe tener un ciudadano para ser un actor activo, propositivo a su comunidad. Entre otros.

Con esto en mente, y centrando este proyecto al contexto de comunidad del Colegio Fernando Soto Aparicio, se propone el desarrollo de un proyecto de trabajo colaborativo - significativo para los estudiantes desde sus vivencias como niños y que permita en ellos tener experiencias de construcción ciudadana desde lo grupal que, implícitamente, fortalezcan habilidades e inteligencias que incluso ellos no reconocer tener. Bienvenidos al proyecto GEN 3D. Liderado por el orientador Fabio Ayala, Augusto Correa y con el apoyo la coordinadora de Convivencia Marcela Duarte.

Objetivos:

  • Promover en los estudiantes experiencias no convencionales a través de la lúdica que propendan en la mejora de desarrollo como ciudadanos
  • Habituar a los estudiantes a desarrollar proyectos grupales, con una perspectiva colaborativa y comunicativa.
  • Incentivar en los estudiantes la creatividad, fomentando la confianza en ellos para expresar sus ideas y pensamientos de forma asertiva

Justificación: ¿Por qué los videojuegos y el modelamiento 3D?

Se ha podido percibir en el contexto de los estudiantes un gran sentimiento de soledad y no reconocimiento de su rol en su comunidad, el cual fue amplificado por el COVID-19. Viendo que ellos tienen un gran interés por la tecnología social, vemos en la tecnología debidamente aplicada un medio para ofrecer un reto al estudiante, motivado por una actividad que usualmente hace en sus tiempos fuera del aula de clases que lo motiva sobremanera desde su interés personal.

Con ello, el proceso de desarrollo de propuestas culturales a través de la lúdica se convierte en un “acelerador de experiencias” que les permitirá a los participantes construir su pensamiento crítico y aumentar su autoestima frente a sus capacidades y aportes a su comunidad.
3
Augusto Correa / Re:Actividad Diagnóstica física grado once
« Último mensaje por moyack on Junio 08, 2022, 10:12:04 am »
Link para la evaluación: https://forms.gle/BKnaxyvJUxbLawSu9

Plazo de entrega: jueves 9 a las 10:00PM
4
Gen 3D / Re:Torneo Fernandista de Clash Royale - 2022
« Último mensaje por moyack on Mayo 25, 2022, 04:46:05 pm »
Nombre del participante Curso Jornada Nombre en CR Tag
Julian Martinez Orozco 703 Tarde SUKETSU1999 #URURJQV90
Julian Samuel Rubio Ortiz 702 Tarde Samuuu #C2V909Q9J
Keinner Steven rolón charry 703 Tarde elkriko399 #JCOOYCVRO
Juan Sebastián Varón Arenas 702 Tarde usa0794 #20Y8PYU2Y
Dominick zambrano Ramírez 703 Tarde Mosquetero JQPLUOC8V
Jesús Daniel García Ruiz 702 Tarde Bestia35402  
Martin Santiago Vargas Ramos 1002 Tarde °VARGAS.R° #G9JRCQPGJ
Diego Alejandro Moreno Moyano 1002 Tarde Deigo JSJS #8L9L0G8VV
Jhean Pablo Nicolas Monsalve Perez 1002 Tarde Sebastián T #Y2URJY98
Andres Felipe león paez 1002 Tarde Ynuyasha #8CRJGJ299
Felipe Carmona 1002 Tarde ELBARTO #J0VQ8R02Y
Sergio Andres chitiva Rodriguez 1002 Tarde Sergio #R8202PGVU
Alejandra Lucía Coral Cifuentes 1002 Tarde CORAL #JCRLUU0UL
Juan Pablo niño días 602 Tarde juanroyale #J8YUPPYGR
Johan estevan ortiz 602 Tarde starlion #JPPQUCJJG
Alejandro Barrera Zamora 1002 Tarde Electrodin #GGJUCJ89
Martin Alberto Moreno Pachón 902 Tarde Martin Moreno #LRY2QQ8RC
Miguel Angel Rojas Lopez 1002 Tarde IROCKETT #LC8RRC9R0
Ezequiel Barahona Casteblanco 1101 Tarde EZEQUIEL0227 #PQV8RC2LL
Nelson Reyes Cadena 1002 Tarde ɴᴇʟꜱᴏɴ #988209ULQ
Brayan stiven Martínez Carvajal 703 Tarde sxmuuuuu C8YY9RQG9
Keller mathius 701 Tarde Miutus #U92UGR
Daniel Santiago 701 Tarde Daniel 10 #JVQP2UPR8
Joseph Santiago Ramírez Daza 1002 Tarde Santiago_yt_  
Deivy yahir Quuezada Gomez 1002 Tarde Deivy #JPGCRJL2C
Esteban Felipe Díaz Ramírez 501 Tarde Fel1p37 JO8UVPJV9
Brayan greg Monsalve cáceres 703 Tarde Brayan2007 #COVGYYUUG
Damien Steven Cuervo Anzola 1101 Tarde Ellinfinito #YLYRGQGPU
David Cerinza Díaz 1101 Tarde FRANKESTEIN #LPGUVCUVG
Andrés Felipe González walteros 1101 Tarde andres12 #YQL0VRGC8
Omar andres gutierrez cuadros 1101 Tarde Omar:b #JQY8G0V92
Dylan Steven Cifuentes Bulla 1101 Tarde Steveenʕっ•ᴥ•ʔっ #2P0RCLRV
Yojhan Steven Santiago sanjuan 1001 Tarde SANTIAGO¿? #JVP0LUYUR
Juan Esteban Fuentes Camacho 1001 Tarde juanescr #Y8Y8L9882
William Esteban Campos Fernández 901 Tarde W3F #C8VUP2PYU
Sebastián Ramírez Tabares 1001 Tarde Narugames9YT #CQQV9L8J2
Andres Felipe Ojeda Gomez 1001 Tarde AJAX  
5
Gen 3D / Torneo Fernandista de Clash Royale - 2022
« Último mensaje por moyack on Mayo 24, 2022, 09:20:09 am »
Bienvenidos al primer torneo Fernandista de Clash Royale - 2022

Fecha de la final del torneo: Junio 16, 1:00 PM


INSCRIPCIONES: https://forms.gle/7eNuUivG8WwLKHJK6
Clan para participar: FSA-Arena
Invitación al clan: https://link.clashroyale.com/invite/clan/en?tag=QGQP98J8&token=3zaak882&platform=android


Normas del juego

  • Debes disponer de un plan de datos en tu celular
  • Tener el aplicativo de Clash Royale y una cuanta activa para poder jugar desde tu celular. NO SE PERMITE PRESTAR CELULARES.
  • Estar dentro del clan del torneo y estar al tanto de los tiempos de participación.
  • No menos importante, el juego limpio y respetuoso durante todo el torneo.

Organización de los Jugadores

Debido a que se completaron más de 32 participantes en la jornada tarde, se utilizó la plataforma Challonge para que esta decidiera el orden de clasificación de cada jugador. La llave final sería la siguiente:



Esquema de la llave clasificatoria

El orden de participación sería siguiendo los números de cada llave. Todo este proceso hasta llegar a los finalistas que participarán por la final.

Se recuerda el estar pendiente de cuando se va a realizar cada una de las partidas. Si hay una partida y uno de los estudiantes no esta presente después de 3 minutos del momento del encuentro, el contrincante pasará a la siguiente etapa por W sumando 1 punto unicamente.


Avance en la clasificatoria

Se jugará con las propias reglas predefinidas del juego para los partidos de clan:

  • Nivel máximo de la torre del rey: 11
  • Nivel máximo de las cartas comunes: 11
  • Nivel máximo de las cartas especiales: 11
  • Nivel máximo de las cartas épicas: 11
  • Nivel máximo de las cartas legendarias: 11
Al ser partidas de 1 VS 1, se utilizará el sistema de tie breaking del juego para definir al ganador.

Al final el torneo se producen tres finalistas de cada llave y entre ellos se realiza una partida todos contra todos. El ganador es quien logre la mayor cantidad de puntuaciones que son la cantidad de torres eliminadas que tengan en la final. En caso de empate el sistema de clasificación de Challonge utilizará los puntos de diferencia para establecer el ganador.


Inscripción de participantes

Para la inscripción, puede acceder directamente desde este link. Este se dejará en la entrada principal en un aviso publicitario con los código QR correspondientes para inscribirse. Se recibirán inscripciones hasta completar los 48 participantes por jornada.


Juego Limpio (Fair Play)

Para el buen desarrollo de este torneo, se debe cumplir a cabalidad las siguientes indicaciones de comportamiento y juego limpio:
  • En cada partida, los contendientes deben espresar su respeto a través del saludo estrechando la mano
  • Antes, durante y después de la partida, no pueden afectar al contendiente a través de palabras o acciones ofensivas
  • De igual manera ninguno de los espectadores puede ofender a los participantes o espectadores del evento
  • En caso de violar algunas de estas normas, se procederá a descalificar o quitar puntos a quien ofenda o sea beneficiado del mal comportamiento en el evento.
6
Augusto Correa / Torque y palancas
« Último mensaje por moyack on Abril 18, 2022, 10:04:59 am »
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES
fecha de calificación: Semana del 30 de Mayo a 3 Junio 2022

~ TEMA DE EVALUACIÓN ~

El torque (O MOMENTO DE TORSIÓN) \( \mathbf {(\tau)} \) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que ésta produzca una rotación alrededor de un eje. El torque se define de la siguiente forma: \[ \text {Torque} = \tau = rF sen \theta \]donde \( r \) es la distancia radial desde el eje al punto de aplicación de la fuerza y \( \theta \) es el ángulo agudo entre las direcciones de \( \mathbf{\vec {r}} \) y de \( \mathbf {\vec {F}} \), como se muestra en la figura 5-1a. Con frecuencia, esta definición se escribe en términos del brazo de palanca de la fuerza, que es la distancia perpendicular desde el eje a la línea de acción de la fuerza, como se muestra en la figura 5-1b. Como el brazo de palanca es igual a \( r sen \theta \), la ecuación del torque se reescribe como:\[ \tau = \text{(F) (brazo de palanca)} \]Las unidades del torque son newton-metro \( (N \cdot m) \). El torque puede ser positivo o negativo; es positivo cuando la rotación alrededor del eje es en sentido opuesto al movimiento de las manecillas del reloj y negativo cuando la rotación es en el mismo sentido en que se mueven las manecillas del reloj.


LAS DOS CONDICIONES PARA EL EQUILIBRIO de un cuerpo rígido bajo la acción de fuerzas coplanares son:
  • La primera o condición de la fuerza: La suma vectorial de todas las fuerzas que actúan sobre el cuerpo debe ser cero:\[ \sum F_x = 0 \qquad \sum F_y = 0 \]donde se ha tomado al plano \( xy \) como el plano de las fuerzas coplanares.

  • La segunda o condición del torque: Tome un eje perpendicular al plano de las fuerzas coplanares. Todas los torques que tienden a producir una rotación en el sentido del reloj onsidérelos como negativas, y las que producen una rotación contra el sentido del reloj, como positivas; la suma de todas las torcas que actúan sobre el objeto debe ser cero:\[ \sum \tau = 0 \]
EL CENTRO DE GRAVEDAD de un objeto es el punto en el cual se puede considerar que está concentrado todo su peso; esto es, la línea de acción del peso pasa por el centro de gravedad. Una sola fuerza vertical y dirigida hacia arriba, igual en magnitud al peso del objeto y aplicada en el centro de gravedad, mantendrá al cuerpo en equilibrio.

LA POSICIÓN DE LOS EJES ES ARBITRARIA: Si la suma de los torques es cero en torno a un eje determinado para un cuerpo que cumple la condición de fuerza, será cero para todo eje paralelo al primero. Generalmente se escoge el eje de tal forma que la línea de acción de la fuerza desconocida pase por la intersección del eje de rotación y el plano de las fuerzas. Entonces el ángulo \( \theta \) entre \( \mathbf{\vec {r}} \) y \( \mathbf {\vec {F}} \) es cero; en consecuencia, dicha fuerza desconocida particular ejerce un torque cero y por tanto no aparece en la ecuación del torque.

  • Calcule el torque alrededor del eje A (que es perpendicular a la página) en la figura 5-2 debida a cada una de las fuerzas indicadas.
  • Una viga metálica uniforme de longitud \( L=1m \) pesa \( 200 N \) y sostiene un objeto de \( 450 N \) como se muestra en la figura 5-3. Calcule la magnitud de las fuerzas que ejercen sobre la viga las columnas de apoyo colocadas en los extremos. Suponga que las longitudes son exactas.
  • Un tubo uniforme de \( 100 N \) se utiliza como palanca, como se muestra en la figura 5-4. ¿Dónde se debe colocar el fulcro (punto de apoyo) si un peso de \( 500 N \) colocado en un extremo se debe balancear con uno de \( 200 N \) colocado en el otro extremo? ¿Cuál es la fuerza de reacción que ejerce el punto de apoyo en el tubo? (Asumir la longitud del tubo como \( L=2m \))
  • ¿En qué punto de una pértiga rígida, uniforme y horizontal de \( 100 N \) se debe colgar un objeto de \( 0.80 kN \), de tal forma que una niña, colocada en uno de los extremos, sostenga un tercio de lo que soporta una mujer colocada en el otro extremo?
  • En un tablón uniforme de \( 0.20 kN \) y longitud \( L=1.5m \) se cuelgan dos objetos: \( 300 N \) a \( L/3 \) de un extremo, y \( 400N \) a \( 3L/4 \) a partir del mismo extremo. ¿Qué otra fuerza debe aplicarse y en qué posición para que el tablón se mantenga en equilibrio?
  • La escuadra (regla de ángulo recto) que se muestra en la figura 5-7 cuelga en reposo de una clavija. Está fabricada con una hoja de metal uniforme. Uno de los brazos tiene una longitud de \( L=50 cm \) y el otro tiene \( 100 cm \) de longitud. Calcule (a dos cifras significativas) el ángulo \( \theta \) que forma cuando está colgada.
  • Examine el diagrama que se muestra en la figura 5-8a. La viga uniforme de \( 0.60 kN \) está sujeta a un gozne (pivote) en el punto \( P \). Calcule la tensión en la cuerda y las componentes de la fuerza de reacción que ejerce el gozne sobre la viga. Dé sus respuestas con dos cifras significativas.
  • Un asta de densidad uniforme y \( 0.40 kN \) está suspendida como se muestra en la figura 5-9a. Calcule la tensión en la cuerda y la fuerza que ejerce el pivote en \( P \) sobre el asta.
  • En la figura 5-10, las bisagras \( A \) y \( B \) mantienen una puerta uniforme de \( 400 N \) en su lugar. La bisagra superior sostiene todo el peso de la puerta. Calcule las fuerzas ejercidas en las bisagras sobre la puerta. El ancho de la puerta es \( h/2 \), donde \( h \) es la separación entre las bisagras.
  • Una escalera se recarga contra una pared lisa, como se muestra en la figura 5-11. (Por pared “lisa” se debe entender que la pared sólo ejerce sobre la escalera una fuerza que es perpendicular a la pared. No existe fuerza de fricción.) La escalera pesa \( 200N \) y su centro de gravedad está a \( 0.40L \) desde el pie y a lo largo de la escalera, \( L \) es la longitud de la escalera y esta mide \( 3m \). a) ¿Cuál debe ser la magnitud de la fuerza de fricción al pie de la escalera para que ésta no resbale? b) ¿Cuál es el coeficiente de fricción estática?
7
Augusto Correa / Re:Actividad Diagnóstica física grado once
« Último mensaje por moyack on Abril 17, 2022, 08:57:54 pm »
Equilibrio bajo la acción de fuerzas concurrentes - fecha de calificación: Semana del 23 a 27 de mayo 2022

LAS FUERZAS CONCURRENTES son todas las fuerzas cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque todas ellas pasan a través del mismo punto, que es el objeto puntual.

UN OBJETO ESTÁ EN EQUILIBRIO bajo la acción de fuerzas concurrentes, siempre que no se esté acelerando.

LA PRIMERA CONDICIÓN DE EQUILIBRIO requiere que \( \sum \vec {\mathbf F} = 0 \), o bien, en forma de componentes, que\[ \sum F_x = \sum F_y = \sum F_z = 0 \]Es decir, la resultante de todas las fuerzas externas que actúan sobre el objeto debe ser cero. Esta condición es suficiente para el equilibrio cuando las fuerzas externas son concurrentes. Una segunda condición debe satisfacerse si el objeto permanece en equilibrio bajo la acción de fuerzas no concurrentes; esto se estudiará en la sección siguiente.

MÉTODO DE RESOLUCIÓN DE PROBLEMAS (FUERZAS CONCURRENTES):
  • Aísle el objeto por estudiar.
  • Muestre, en un diagrama, las fuerzas que actúan sobre el cuerpo aislado (diagrama de cuerpo libre).
  • Encuentre las componentes rectangulares de cada fuerza.
  • Escriba la primera condición de equilibrio en forma de ecuación.
  • Resuelva para determinar las cantidades requeridas.

EL PESO DE UN OBJETO \( (\vec {F}_W ) \) es la fuerza con que la gravedad tira al cuerpo hacia abajo.

LA FUERZA DE TENSIÓN \( (\vec {F}_T ) \) es la fuerza que actúa sobre una cuerda, un cable o una cadena (o, de hecho, sobre cualquier miembro estructural) y que tiende a alargarlo. La magnitud escalar de la fuerza de tensión es la tensión \( (F_T ) \).

FUERZA DE FRICCIÓN \( (\vec {F}_f ) \) es una fuerza tangencial que actúa sobre un objeto que se opone al deslizamiento del objeto a través de una superficie adyacente con la que está en contacto. La fuerza de fricción es paralela a la superficie y opuesta, en sentido, a su movimiento o del movimiento inminente.

LA FUERZA NORMAL \( (\vec {F}_N ) \) sobre un objeto que descansa por una superficie es la componente de la fuerza de soporte que es perpendicular a la superficie.

POLEAS: Cuando un sistema de varias poleas ligeras sin fricción tiene una cuerda simple continua alrededor de él, la tensión en cada trozo de la cuerda es igual a la fuerza aplicada al extremo de la cuerda \( (F) \) por algún agente externo. Así, cuando la carga es soportada por \( N \) trozos de esta cuerda, la fuerza neta entregada a la cuerda, la fuerza suministrada, es \( N \cdot F \). Con frecuencia, la polea adjunta a la carga se mueve con la carga y sólo es necesario contar el número de trozos de la cuerda \( (N) \) que actúan sobre dicha polea para determinar la fuerza suministrada.

  • En la figura 4-1a la tensión en la cuerda horizontal es de \( 30 N \). Encuentre el peso del objeto.
  • Una cuerda se extiende entre dos postes. Un joven de \( 90 N \) se cuelga de la cuerda como se muestra en la figura 4-2a. Encuentre las tensiones en las dos secciones de la cuerda.
  • Una caja de \( 50 N \) se desliza sobre el piso con rapidez constante por medio de una fuerza de \( 25 N \), como se muestra en la figura 4-3a. a) ¿Cuál es el valor de la fuerza de fricción que se opone al movimiento de la caja? b) ¿Cuál es el valor de la fuerza normal? c) Determine \( \mu_c \) entre la caja y el piso.
  • Determine las tensiones de las cuerdas que se muestran en la figura 4-4a, si el objeto soportado pesa \( 600 N \).
  • Los objetos de la figura 4-5 están en equilibrio. Determine el valor de la fuerza normal \( F_N \) en cada caso.
  • Para las situaciones del problema 4.5, determine el coeficiente de fricción cinética si el objeto se mueve con rapidez constante. Redondee sus respuestas a dos cifras significativas.
  • Suponga que el bloque que se encuentra en la figura 4-5c está en reposo. El ángulo del plano se aumenta lentamente. A un ángulo \( \theta=42° \), el bloque comienza a deslizarse. ¿Cuál es el coeficiente de fricción estática entre el bloque y el plano inclinado? (El bloque y la superficie no son los mismos de los problemas 5 y 6.)
  • Jalado por un bloque de \( 8.0 N \), como se muestra en la figura 4-6a, un bloque de \( 20 N \) se desliza hacia la derecha con velocidad constante. Calcule \( \mu_c \) entre el bloque y la mesa. Suponga que la fricción en la polea es despreciable.
  • La carga que aparece en la figura 4-7 cuelga en reposo. Asumiendo que todas las cuerdas están verticales y las poleas no tienen peso ni fricción. a) ¿Cuántos segmentos de la cuerda soportan la combinación de la polea y la cuerda inferior? b) ¿Cuál es la tensión en la cuerda que se enreda en las poleas? c) ¿Cuánta fuerza ejerce la persona? d) ¿Cuánta fuerza actúa hacia abajo sobre el gancho del techo?
  • En la figura 4-8 aparece una carga de \( 600 N \) que cuelga sin movimiento. Suponga que las cuerdas están todas verticales y que las poleas no tienen fricción ni peso. a) ¿Cuál es la tensión en el gancho inferior unido, mediante un anillo, a la carga? b) ¿Cuántas partes de la cuerda soportan la polea móvil? c) ¿Cuál es la tensión a lo largo de la cuerda? d) ¿Cuánta fuerza aplica la persona? e) ¿Cuánta fuerza actúa hacia abajo en el techo?
  • Para la situación mostrada en la figura 4-9, encuentre los valores de \( F_{T1} \) y \( F_{T2} \) si el peso del objeto es de \( 600 N \).
  • Las fuerzas coplanares siguientes tiran sobre un anillo: \( 200 N \) a \( 30.0° \), \( 500 N \) a \( 80.0° \), \( 300 N \) a \( 240° \) y una fuerza desconocida (que llamaremos \( F_x \)). Encuentre la fuerza y la dirección de la fuerza desconocida si el anillo está en equilibrio.
  • En la figura 4-10 las poleas no tienen fricción y el sistema cuelga en equilibrio. Si \( F_{W3} \), el peso del objeto ubicado a la derecha, es de \( 200 N \), ¿cuáles son los valores de \( F_{W1} \) y \( F_{W2} \)?
  • En la figura 4-11, ¿cuánto debe pesar el objeto que está a la derecha si el bloque de \( 200 N \) permanece en reposo y la fricción entre el bloque y la pendiente es despreciable?
  • El sistema de la figura 4-11 permanece en reposo cuando \( F_W = 220 N \). ¿Cuáles son la magnitud y dirección de la fuerza de fricción en el bloque de \( 200 N \)?
  • Encuentre la fuerza normal que actúa sobre el bloque en cada una de las situaciones de equilibrio que se muestran en la figura 4-12
  • El bloque que se muestra en la figura 4-12a se desliza con una rapidez constante bajo la acción de la fuerza mostrada. a) ¿Cuán grande es la fuerza de fricción retardadora? b) ¿Cuál es el coeficiente de fricción cinética entre el bloque y la superficie?
  • El bloque que se muestra en la figura 4-12b se desliza hacia abajo con rapidez constante. a) ¿De cuánto es la fuerza de fricción que se opone a su movimiento? b) ¿Cuál es el coeficiente de fricción de deslizamiento (cinética) entre el bloque y el plano?
  • El bloque de la figura 4-12c empieza a deslizarse hacia arriba de la pendiente cuando la fuerza de empuje mostrada se incrementa a \( 70 N \). a) ¿Cuál es la fuerza de fricción estática máxima sobre él? b) ¿Cuál es el valor del coeficiente de fricción estática?
  • Si \( F_W = 40 N \) en la situación de equilibrio que se muestra en la figura 4-13, encuentre \( F_{T1} \) y \( F_{T2} \).
8
Augusto Correa / Re:Actividad Diagnóstica física grado once
« Último mensaje por moyack on Marzo 31, 2022, 09:28:38 am »
Dinámica

Leyes de Newton - fecha de calificación: Semana del 16 a 20 de mayo 2022

LA MASA de un objeto es una medida de su inercia. Se llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad. Durante varios siglos, los físicos habían encontrado útil concebir la masa como una representación de la cantidad de materia, pero esa idea ya no es sostenible (como se aprendió a partir de la Relatividad Especial).

EL KILOGRAMO PATRÓN es un objeto cuya masa se define como un kilogramo. Las masas de otros objetos se encuentran por comparación con esta masa. Un gramo masa equivale exactamente a 0.001 kg.

FUERZA, en general, es el agente del cambio. En mecánica, es aquello que cambia la velocidad de un objeto. La fuerza es una cantidad vectorial, que tiene magnitud y dirección. Una fuerza externa es aquella cuya fuente se encuentra fuera del sistema que se está considerando.

LA FUERZA RESULTANTE que actúa sobre un objeto le proporciona una aceleración en la dirección de la fuerza. La aceleración es proporcional a la fuerza e inversamente proporcional a la masa del objeto. (A partir de la Teoría Especial de la Relatividad, ahora se sabe que este enunciado en realidad es una aproximación excelente, aplicable a todas las situaciones donde la rapidez es apreciablemente menor que la de la luz, c.)

EL NEWTON es la unidad de fuerza en el SI. Un newton \( (1 N) \) es la fuerza resultante que proporciona a \( 1 kg \) una aceleración de \( 1 m/s2 \). La libra equivale a 4.45 N o, de manera alternativa, un newton es aproximadamente un cuarto de libra.

PRIMERA LEY DE NEWTON: Un objeto en reposo permanecerá en reposo; un objeto en movimiento seguirá moviéndose con velocidad constante, excepto en cuanto recibe la acción de una fuerza externa. La fuerza es lo que cambia el movimiento.

SEGUNDA LEY DE NEWTON: Como la enunció Newton, la segunda ley se estructuró en términos del concepto de cantidad movimiento. En este punto, el enfoque será sobre una variación menos fundamental, pero muy útil. Si la fuerza resultante (neta) \( \mathbf {\vec F} \) que actúa sobre un objeto de masa \( m \) no es cero, el objeto se acelerará en la dirección de 1a fuerza. La aceleración \( \mathbf {\vec a} \) es proporcional a primera fuerza e inversamente proporcional a la masa del objeto. Con \( \mathbf {\vec F} \) en newtons, \( m \) en kilogramos y \( \mathbf {\vec a} \) en \( m/s^2 \), esta proporcionalidad se puede escribir como una ecuación:\[ \mathbf {\vec a}=\frac {\mathbf {\vec F}}{m}~~~ \text ó ~~~ \mathbf {\vec F}=m \mathbf {\vec a} \]
La aceleración \( \mathbf {\vec a} \) tiene la misma dirección que la fuerza resultante \( \mathbf {\vec F} \).
La ecuación vectorial \( \mathbf {\vec F}=m \mathbf {\vec a} \) puede escribirse en términos de sus componentes como\[ \sum F_x = ma_x ~~~~ \sum F_y = ma_y ~~~~ \sum F_z = ma_z \]

TERCERA LEY DE NEWTON: La materia interactúa con la materia; las fuerzas se presentan en pares. Por cada fuerza que actúa sobre un cuerpo, existe otra igual, pero en sentido opuesto, actuando sobre algún otro cuerpo. Con frecuencia a ésta se le llama ley de acción y reacción. Note que las fuerzas de acción y reacción actúan en los dos diferentes cuerpos que interactúan.

LEY DE LA GRAVITACIÓN UNIVERSAL: Cuando dos masas \( m_1 \) y \( m_2 \) interactúan gravitacionalmente se atraen entre sí con fuerzas de igual magnitud. Para masas puntuales (o cuerpos con simetría esférica), la fuerza de atracción \( F_G \) está dada por\[ F_G=G \frac {m_1 \times m_2}{r^2} \]Donde \( r \) es la distancia entre los centros de las masas, y \( G = 6.67 \times 10^{-11} N \cdot m^2/kg^2 \) cuando \( F_G \) está en newtons, \( m_1 \) y \( m_2 \) están en kilogramos y \( r \) está en metros.

EL PESO de un cuerpo \( (F_W) \) es la fuerza gravitacional que atrae al cuerpo. En la Tierra, es la fuerza gravitacional que ejerce la Tierra sobre el cuerpo. Sus unidades son newtons (en el SI) y libras (en el sistema británico). Debido a que la Tierra no es una esfera uniforme perfecta, y sobre todo más por su rotación, el peso medido por una balanza (con frecuencia llamado peso efectivo) será diferente, de manera muy ligera, del que se acaba de definir.

RELACIÓN ENTRE MASA Y PESO: Un cuerpo de masa \( m \) en caída libre hacia la Tierra está bajo la acción de una sola fuerza, la atracción gravitacional, a la que se conoce como peso \( F_W \) del objeto. La aceleración \( g \) que tiene un objeto en caída libre se debe a su peso \( F_W \). Entonces, la ecuación \( \mathbf {\vec F}=m \mathbf {\vec a} \) da la relación entre \( F = F_W \), \( a = g \) y \( m \); esto es, \( F_W = mg \). Como en la superficie terrestre, en promedio, \( g = 9.81 m/s^2 \), un objeto de \( 1.00 kg \) pesa \( 9.81N \) (o \( 2.20 lb \)).

FUERZA DE TENSIÓN \( (\vec {F}_T) \) es la fuerza con la que una cuerda o cadena tira del objeto al cual está unida. La magnitud de la fuerza de tensión es la tensión \( (F_T) \).

FUERZA DE FRICCIÓN \( (\vec {F}_f) \) es una fuerza tangencial que actúa sobre una superficie que se opone al deslizamiento de la superficie a través de una superficie adyacente. La fuerza de fricción es paralela a la superficie y opuesta, en sentido, a su movimiento. Un objeto empezará a resbalar sólo cuando la fuerza aplicada sobrepase la fuerza máxima de fricción estática.

FUERZA NORMAL \( (\vec {F}_N) \) sobre una superficie que descansa sobre una segunda superficie, es la componente perpendicular de la fuerza ejercida por la superficie de soporte sobre la superficie que está siendo soportada.

COEFICIENTE DE FRICCIÓN CINÉTICA \( (\mu_c) \) se define para el caso en el que una superficie se desliza a través de otra con rapidez constante. Esto es\[ \mu_c=\frac {\text {fuerza de fricción}}{\text {fuerza normal}} = \frac {F_f}{F_N} \]

EL COEFICIENTE DE FRICCIÓN ESTÁTICA \( ( \mu_e ) \) se define para el caso en donde una superficie está a punto de deslizarse a través de otra superficie. Esto es\[ \mu_e=\frac {\text {fuerza de fricción crítica}}{\text {fuerza normal}} = \frac {F_f \text{ (máx)}}{F_N} \]donde la fuerza de fricción máxima es la fuerza de fricción cuando el objeto está a punto de iniciar su desplazamiento.

  • Cuatro fuerzas coplanares actúan sobre un cuerpo en el punto O presentado en la figura 3-1a. Determine su resultante de manera gráfica.
  • Las cinco fuerzas coplanares presentadas en la figura 3-2a actúan sobre un objeto. Encuentre su resultante.
  • Resuelva el problema (1) mediante el método de componentes. Obtenga una respuesta con una magnitud de dos cifras significativas.
  • Una fuerza de 100 N hace un ángulo de \( \theta \) con el eje \( x \) y tiene una componente y escalar de 30 N. Encuentre la componente \( x \) escalar de la fuerza y el ángulo \( \theta \).
  • Un niño jala una cuerda atada a un trineo con una fuerza de 60 N. La cuerda hace un ángulo de 40° con el suelo. a) Calcule el valor real del tirón que tiende a mover el trineo por el suelo. b) Calcule la fuerza que tiende a elevar el trineo verticalmente.
  • Un automóvil que pesa \( F_W \) está en una rampa que tiene un ángulo \( \theta \) con la horizontal. ¿Cuál es la intensidad de la fuerza perpendicular que debe soportar la rampa para que no se rompa bajo el peso del automóvil?
  • Tres fuerzas que actúan sobre una partícula están dadas mediante \( \mathbf {\vec F_1} = (20 \mathbf {\hat i} -36\mathbf {\hat j}+73\mathbf {\hat k})N \), \( \mathbf {\vec F_2} = (-17 \mathbf {\hat i} +21\mathbf {\hat j}-43\mathbf {\hat k})N \). Encuentre su vector resultante. Determine también la magnitud de la resultante con dos cifras significativas.
  • Encuentre el peso de un cuerpo, si su masa en la Tierra es a) 3.00 kg, b) 200 g.
  • A un objeto de 20.0 kg que se mueve libremente se le aplica una fuerza resultante de 45.0 N en la dirección \( -x \). Calcule la aceleración del objeto.
  • El objeto que se muestra en la figura 3-7a pesa 50 N y está suspendido por una cuerda. Encuentre el valor de la tensión en la cuerda.
  • Un objeto de 5.0 kg se jala hacia arriba con una cuerda acelerándolo a 0.30 m/s². ¿Cuál debe ser la tensión en la cuerda?
  • Se necesita una fuerza horizontal de 140 N para jalar una caja de 60.0 kg sobre un piso horizontal con rapidez constante. ¿Cuál es el coeficiente de fricción entre el piso y la caja? Determínelo a tres cifras significativas, aun cuando esto no sea muy realista.
  • La única fuerza que actúa sobre un objeto de 5.0 kg tiene por componentes \( F_x = 20 N \) y \( Fy = 30 N \). Encuentre la aceleración del objeto.
  • Se desea aplicar una aceleración de 0.70 m/s² a un objeto de 600 N. ¿De qué magnitud debe ser la fuerza no balanceada que actúa sobre él?
  • Una fuerza constante actúa sobre un objeto de 5.0 kg y disminuye su velocidad de 7.0 m/s a 3.0 m/s en un tiempo de 3.0 s. Encuentre la fuerza.
  • Un bloque de 400 g con rapidez inicial de 80 cm/s resbala sobre la cubierta de una mesa horizontal en contra de una fuerza de fricción de 0.70 N. a) ¿Qué distancia recorrerá resbalando antes de detenerse? b) ¿Cuál es el coeficiente de fricción entre el bloque y la cubierta de la mesa?
  • Un automóvil de 600 kg de peso se mueve en un camino nivelado a 30 m/s. a) ¿Qué tan grande debe ser la magnitud de la fuerza retardadora (supuesta constante) que se requiere para detener al automóvil en una distancia de 70 m? b) ¿Cuál es el mínimo coeficiente de fricción entre las llantas y el camino para que esto suceda? Suponga que las ruedas no están trabadas, en cuyo caso se trata con fricción estática; no hay resbalamiento.
  • Una locomotora de 8000 kg tira de un tren de 40 000 kg a lo largo de una vía nivelada y le proporciona una aceleración \( a_1 = 1.20 m/s^2 \). ¿Qué aceleración \( (a_2) \) le proporcionaría a un tren de 16 000 kg?
  • En la figura 3-11a un objeto de masa m está colgado de una cuerda. Calcule la tensión en la cuerda si el objeto a) está en reposo, b) se mueve con velocidad constante, c) acelera hacia arriba con una aceleración \( a= \frac {3g}{2} \) y d) acelera hacia abajo con \( a = 0.75g \).
  • Una cuerda de remolque se romperá si la tensión sobre ella excede los 1500 N. Se utilizará para remolcar un automóvil de 700 kg a lo largo de un piso nivelado. ¿Cuál es el valor máximo de la aceleración que se puede aplicar al automóvil con esta cuerda?
  • Calcule la aceleración mínima con la que una mujer de 45 kg se desliza por una cuerda, si la cuerda sólo puede soportar una tensión de 300 N.
  • Una caja de 70 kg resbala a lo largo de un piso debido a una fuerza de 400 N, como se muestra en la figura 3-13. El coeficiente de fricción entre la caja y el piso cuando la caja resbala es de 0.50. Calcule la aceleración de la caja.
  • Suponga, como se muestra en la figura 3-14, que una caja de 70 kg se jala con una fuerza de 400 N que
    forma un ángulo de 30° con la horizontal. El coeficiente de fricción cinética es 0.50. Calcule la aceleración de la caja.
  • Un automóvil que se mueve a 20 m/s en un camino horizontal aplica de manera repentina los frenos y finalmente llega al reposo. ¿Cuál es la distancia más corta en que puede detenerse si el coeficiente de fricción entre las llantas y el camino es de 0.90? Suponga que todas las llantas frenan idénticamente y que los frenos no traban la detención del automóvil mediante la fricción estática.
  • Como se muestra en la figura 3-15, una fuerza de 400 N empuja una caja de 25 kg. Partiendo del reposo,
    la caja alcanza una velocidad de 2.0 m/s en un tiempo de 4.0 s. Encuentre el coeficiente de fricción cinético entre la caja y el piso.
  • Se tira de una vagoneta de 200 N, con rapidez constante, hacia arriba de un plano inclinado que forma un ángulo de 30° con la horizontal. ¿Qué tan grande debe ser la fuerza paralela al plano inclinado, si se desprecian los efectos de la fricción?
  • Una caja de 20 kg reposa sobre un plano inclinado, como se muestra en la figura 3-17. El coeficiente de fricción cinética entre la caja y el plano inclinado es 0.30. Calcule la aceleración con la que desciende la caja por el plano inclinado.
  • Cuando una fuerza de 500 N empuja una caja de 25 kg, como se muestra en la figura 3-18, la aceleración de la caja al subir por el plano es 0.75 m/s². Calcule el coeficiente de fricción cinética entre la caja y el plano.
  • Dos bloques, de masas \( m_1 \) y \( m_2 \) , son empujados por una fuerza \( F \) como se muestra en la figura 3-19. El coeficiente de fricción entre cada bloque y la mesa es 0.40. a) ¿Cuál debe ser el valor de la fuerza \( F \) si los
    bloques han de tener una aceleración de 200 cm/s²? b) ¿Qué fuerza ejerce \( m_1 \) sobre \( m_2 \) ? Utilice \( m_1 = 300 g \) y \( m_2 = 500 g \). Recuerde trabajar en unidades del Sistema Internacional.
  • Una masa de 7.0 kg cuelga del extremo de una cuerda que pasa por una polea sin masa ni fricción, y en el otro extremo cuelga una masa de 9.0 kg, como se muestra en la figura 3-20. (Este arreglo se llama máquina de Atwood.) Encuentre la aceleración de las masas y la tensión en la cuerda.
9
Augusto Correa / Re:Actividad Diagnóstica física grado once
« Último mensaje por moyack on Marzo 24, 2022, 08:17:33 am »
Problemas complementarios MUA: - fecha de calificación: Semana del 9 al 13 de mayo 2022
  • Para el objeto cuyo movimiento se grafica en la figura 2-2, calcule su velocidad instantánea en los siguientes tiempos: a) 1.0 s, b) 4.0 s y c) 10 s.
  • Un cuerpo con velocidad inicial de 8.0 m/s se mueve a lo largo de una línea recta con aceleración constante y recorre 640 m en 40 s. Para el intervalo de 40 s, encuentre: a) la velocidad promedio, b) la velocidad final y c) la aceleración.
  • Un autobús parte del reposo y se mueve con una aceleración constante de 5.0 m/s². Encuentre su rapidez y la distancia recorrida después de transcurridos 4.0 s.
  • Una caja se desliza hacia abajo sobre un plano inclinado con aceleración uniforme. Parte del reposo y alcanza una rapidez de 2.7 m/s en 3.0 s. Encuentre a) la aceleración y b) la distancia recorrida en los primeros 6.0 s.
  • Un automóvil acelera uniformemente mientras pasa por dos puntos marcados que están separados 30 m. El tiempo que tarda en recorrer la distancia entre los dos puntos es de 4.0 s y la rapidez del automóvil en el primer punto marcado es de 5.0 m/s. Encuentre la aceleración del automóvil y su rapidez al llegar al segundo punto marcado.
  • La velocidad de un automóvil aumenta uniformemente de 6.0 m/s a 20 m/s al recorrer una distancia de 70 m en línea recta. Calcule la aceleración y el tiempo transcurrido.
  • Un aeroplano parte del reposo y acelera uniformemente en línea recta sobre el piso antes de elevarse. Recorre 600 m en 12 s. Encuentre: a) la aceleración, b) la rapidez al final de los 12 s y c) la distancia que recorre durante el duodécimo segundo.
  • Un tren que corre a lo largo de una línea recta a 30 m/s frena uniformemente hasta detenerse en 44 s. Determine la aceleración y la distancia recorrida hasta detenerse.
  • Un objeto que se mueve a 13 m/s frena uniformemente a razón de 2.0 m/s por cada segundo durante un tiempo de 6.0 s. Determine: a) su rapidez final, b) su rapidez promedio durante los 6.0 s y c) la distancia recorrida en los 6.0 s.
  • Un cuerpo cae libremente desde el reposo. Encuentre: a) su aceleración, b) la distancia que recorre en 3.0 s, c) su rapidez después de caer 70 m, d) el tiempo necesario para alcanzar una rapidez de 25 m/s y e) el tiempo que tarda en caer 300 m.
  • Se deja caer una canica desde un puente y golpea el agua en un tiempo de 5.0 s. Calcule a) la rapidez con que choca contra el agua y b) la altura del puente.
  • Se arroja una piedra hacia abajo en línea recta con una rapidez inicial de 8.0 m/s y desde una altura de 25 m. Encuentre a) el tiempo que tarda en llegar al piso y b) la rapidez con la que choca contra el piso.
  • Se lanza una pelota de béisbol hacia arriba con una rapidez de 30 m/s. a) ¿Cuánto tiempo tarda en subir? b) ¿A qué altura llegará? c) ¿Cuánto tiempo tardará, a partir de que se separa de la mano, en regresar a su punto de partida? d) ¿Cuándo tendrá una rapidez de 16 m/s?
  • Una botella que se deja caer desde un globo alcanza el piso en 20 s. Determine la altura del globo si: a) estuviera en reposo en el aire, b) ascendiera con una rapidez de 50 m/s cuando se deja caer la botella.
  • Se dejan caer dos pelotas al piso desde diferentes alturas. Una se deja caer 1.5 s después de la otra, pero ambas golpean el piso al mismo tiempo, 5.0 s después de dejar caer la primera. a) ¿Cuál es la diferencia de alturas a la cual se dejaron caer? b) ¿Desde qué altura se dejó caer la primera pelota?
  • Mientras un ascensor se mueve hacia arriba por un cubo a una velocidad de 3.00 m/s, se suelta una tuerca de un tornillo. La tuerca golpea el fondo del cubo del ascensor en 2.00 s. a) ¿A qué altura con respecto al fondo del cubo se encuentra el ascensor cuando se desprendió la tuerca? b) ¿Qué tan lejos del fondo estaba la tuerca 0.25 s después de salirse de su sitio?
  • Una canica, que rueda con una rapidez de 20 cm/s, cae por el borde de una mesa que tiene una altura de 80cm. a) ¿Cuánto tiempo necesita para chocar con el piso? b) ¿A qué distancia horizontal del borde de la mesa chocará la canica contra el piso?
  • Un cuerpo con rapidez inicial de 40 m/s se lanza hacia arriba desde el nivel del piso, con un ángulo de 50° con la horizontal. a) ¿Cuánto tiempo transcurrirá antes de que el cuerpo choque contra el piso? b) ¿A qué distancia del punto de partida golpeará el piso? c) ¿Cuál será el ángulo con la horizontal al chocar?
  • Se lanza un cuerpo hacia abajo desde el punto más alto de un edificio de 170 m de altura, formando un ángulo de 30° con la horizontal. Su rapidez inicial es de 40 m/s. a) ¿Cuánto tiempo transcurrirá antes de que el cuerpo llegue al piso? b) ¿A qué distancia del pie del edificio golpeará? c) ¿Cuál será el ángulo con la horizontal al cual chocará?
  • Una manguera que se encuentra tendida en el piso lanza una corriente de agua hacia arriba con un ángulo de 40° con la horizontal. La rapidez del agua es de 20 m/s cuando sale de la manguera. ¿A qué altura golpeará sobre una pared que se encuentra a 8.0 m de distancia?
10
Augusto Correa / Videos de trabajo 10EJM
« Último mensaje por moyack on Marzo 20, 2022, 12:15:06 am »
Buen día mis estimados estudiantes, les comparto los videos que vamos a usar para entender el modelo de interpolación de Newton. Decidí ofrecerles esta opción pues es más sencilla de trabajar y de manejar.




MODO DE SOLUCIÓN DE EXPRESIONES COMPLEJAS:
http://algebrite.org/#Expansion
Páginas: [1] 2 3 ... 10